

# FLOOD RISK & DRAINAGE



**Chalk Road, Higham**  
Flood Risk Assessment  
August 2025

Report Ref: 29524-FLD-0101 Rev B

# Chalk Road, Higham

## Flood Risk Assessment

### August 2025

REPORT REF: 29524-FLD-0101 Rev B

CLIENT: Richborough

ENGINEER: MEC Consulting Group Ltd  
The Old Chapel  
Station Road  
Hugglescote  
Leicestershire  
LE67 2GB

Tel: 01530 264 753  
Email [group@m-ec.co.uk](mailto:group@m-ec.co.uk)

#### REGISTRATION OF AMENDMENTS

| Date        | Rev | Comment                    | Prepared By                                                                  | Checked By                                                               | Approved By                                                                     |
|-------------|-----|----------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| July 2025   | -   | First issue                | <b>Ben Oyston</b><br><b>MSc, BSc (Hons)</b><br>Assistant Flood Risk Engineer | <b>Ryan Chafer</b><br><b>BSc (Hons)</b><br>Principal Flood Risk Engineer | <b>Alexander Bennett</b><br><b>BSc (Hons), MCIHT, MTPS</b><br>Managing Director |
| August 2025 | A   | Updated layout plan        | <b>Alexander Bennett</b><br>BSc (Hons) MCIHT MTPS<br>Managing Director       |                                                                          |                                                                                 |
| August 2025 | B   | Updated Flood Extents Plan | <b>Ben Oyston</b><br><b>MSc, BSc (Hons)</b><br>Assistant Flood Risk Engineer | <b>Ryan Chafer</b><br><b>BSc (Hons)</b><br>Principal Flood Risk Engineer | <b>Alexander Bennett</b><br><b>BSc (Hons), MCIHT, MTPS</b><br>Managing Director |

#### COPYRIGHT

The contents of this document must not be copied or reproduced in whole or part without the written consent of MEC Consulting Group Ltd.

## EXECUTIVE SUMMARY

|                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Site Address</b>                                                                                                                                                           | Chalk Road, Higham. Grid Reference E:571119, N:172997.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>Site Description and Setting</b>                                                                                                                                           | The site is located on Chalk Road, Higham. The current site area is formed of former agricultural buildings and open green space. The site is bounded to the north and west by green space, to the east by the railway line and to the south by Chalk Road.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>Proposed Development</b>                                                                                                                                                   | Outline application for the demolition of existing buildings and erection up to 40 residential dwellings, public open space and associated works. Approval is sought for the principal means of vehicular access from Chalk Road and all other matters are reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Flood Risk Information</b>                                                                                                                                                 | <p>The Environment Agency Flood Map for Planning shows most of the site is located within FZ1, with the north of the site located in FZ2 and FZ3. It should be noted that the Flood Map for Planning does not consider the effect of flood defences on flood risk.</p> <p>The site is shown to be in an area mapped to be at a reduced risk of flooding due to flood defences. While the EA Flood Map for Planning does not consider the effect of flood defences on flood risk, the EA have produced the Risk of Flooding from Rivers and Seas datasets, which does consider the impact of flood defences on flood risk. The Risk of Flooding from Rivers and Seas mapping shows the site to be at very low risk of flooding when the defence is considered.</p> <p>Product 6 Data was acquired from the Environment Agency. The Product 6 information shows that during a tidal event and with the defences in place, the site is not at risk from the 1 in 200 year event and the 1 in 1000 year event. Given the above, the site is at low risk of tidal flooding.</p> <p>The Environment Agency Flood Risk from Surface Water Map indicates the site to be mostly at low risk from surface water flooding. The map shows three areas within the site at low to high risk of surface water flooding, along the northern boundary, within the northern central area, over the existing pond on-site and within the western edge where the existing farm buildings are located.</p> <p>Groundwater was encountered during soakage testing in two trial pits at depths of 1.80m bgl and 2.00m bgl in the northeastern corner of the site. Given the above the risk of groundwater flooding to the site is considered medium</p> <p>All other sources of flooding is considered low.</p> |
| <b>Surface Water Drainage Strategy</b>                                                                                                                                        | <p>In accordance with the National SuDS Standards, the strategy involves conveying surface water flows to multiple geo-cellular tanks and an attenuation basin before discharging to the existing culvert to the north. A total storage volume of 774.26m<sup>3</sup> will be available within the proposed attenuation features to manage flows generated for all events up to and including the 1%AEP45CC event.</p> <p>Additional drainage features, including water butts, rain gardens and permeable paving will be used across the site to provide extra storage on site and act as a first treatment stage of treatment for any run-off.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>Foul Drainage Strategy</b>                                                                                                                                                 | <p>Sewer records and a Developer Enquiry have been obtained from Southern Water. The records show the presence of a 175mm foul sewer located to the south of the site along Chalk Road; there is a further 100mm foul sewer to the east of the site. There is an existing pumping station located along the southwestern boundary of the site that has a foul rising main leading to the south.</p> <p>Given the levels on site, it is proposed that foul water flows generated on site will need to be pumped first to allow for a gravity connection to be made. It is proposed and has been agreed with Southern Water that foul flows generated on site will discharge into the existing foul sewer along Chalk Road at MH1902. Southern Water has confirmed that improvement works will be required to accommodate the proposed discharge rate of 0.36l/s.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>Conclusions</b>                                                                                                                                                            | With the above measures in place, the development of the site will not create any flood risk issues within the wider area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>This summary should be read in conjunction with the full report and reflects an assessment of the site based on information received by MEC at the time of production.</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## CONTENTS

|     |                                   |    |
|-----|-----------------------------------|----|
| 1.0 | INTRODUCTION                      | 5  |
| 2.0 | SITE DESCRIPTION                  | 7  |
| 3.0 | POLICY CONTEXT                    | 7  |
| 4.0 | FLOOD RISK TO SITE                | 11 |
| 5.0 | FLOOD RISK ASSESSMENT             | 18 |
| 6.0 | SURFACE WATER MANAGEMENT STRATEGY | 22 |
| 7.0 | FOUL WATER STRATEGY               | 29 |
| 8.0 | CONCLUSION AND SUMMARY            | 30 |

## APPENDICES

- A. SITE LOCATION
- B. ILLUSTRATIVE DEVELOPMENT FRAMEWORK PLAN
- C. KENT COUNTY COUNCIL PRE-APP ADVICE
- D. TOPOGRAPHICAL SURVEY
- E. SOUTHERN WATER CORRESPONDENCE
- F. CCTV SURVEY
- G. MEC SOAKAGE TESTING (29524-CALC-0401)
- H. FLOOD EXTENTS PLAN (29524\_01\_230\_02a)
- I. DRAINAGE STRATEGY (29524\_01\_230\_01a)
- J. ATTENUATION CALCULATIONS (29524-CALC-0101)
- K. MAINTENANCE AND MANAGEMENT

## 1.0 INTRODUCTION

1.1 MEC Consulting Group Ltd (MEC) has been commissioned by Richborough (hereafter referred to as 'the Client') to undertake a Flood Risk Assessment for a proposed residential development at Chalk Road, Higham (hereafter referred to as 'the Site'). A site location plan is provided in **Appendix A**.

1.2 The development proposals comprise;

*Outline application for the demolition of existing buildings and erection up to 40 residential dwellings, public open space and associated works. Approval is sought for the principal means of vehicular access from Chalk Road and all other matters are reserved.*

1.3 An illustrative development framework plan is presented in **Appendix B**.

1.4 The proposed development will take place on former agricultural buildings and open space. The site is located to the north of Lower Higham at Grid Reference E:571119, N:172997.

1.5 The assessment has been undertaken to ascertain the constraints of the development to the site and assess the impact of the design, concerning flood risk.

1.6 The Local Planning Authority for the site is Gravesham Borough Council and the Lead Local Flood Authority is Kent County Council (KCC). The site falls within the Southern Water (SW) Catchment.

1.7 Pre-Application Advice was received from KCC on the 8th of July 2025. The response can be seen within **Appendix C**. Further email communications were also undertaken with KCC and can also be seen within **Appendix C**. A summary of the points raised within the advice has been listed out below;

- The site is located within Flood Zones 2 and 3 in regards to an undefended scenario.
- Mapping for Flood Risk from Rivers and Seas with defences places the site outside of flood extents, the site benefits from defences against tidal flood risk.
- Areas of medium or greater surface water risk are most likely associated with topographical low points and areas adjacent to the existing buildings on site.
- Given the site is defined as defended, the proposed location of the attenuation basin will not raise concerns.
- Discharging solely via infiltration has been ruled out, it is still recommended however to use opportunities for inception losses via the inclusion of suitable SuDs devices to meet with national standards.
- It is recommended that drainage modelling be based on a CV value of 1.
- The existing highway drain on site needs to be accommodated or diverted as part of the proposals for the development.

1.8 The assessment has been prepared using our best engineering judgement however, there are levels of uncertainty implicit in the historical data and methods of analysis. The report is based on the following information:

- British Geological Survey (BGS);
- The Flood Map for Planning and the Long-term Flood Risk Map from the Environment Agency and .gov.uk websites; and
- The Gravesham Local Plan Core Strategy, September 2014
- The Kent Thameside Delivery Board Strategic Flood Risk Assessment of Kent Thameside, December 2005
- The Kent County Council Preliminary Flood Risk Assessment Report, September 2011
- The Kent Local Flood Risk Management Strategy 2024-2034, June 2024
- The Kent County Council Flood Risk to Communities Gravesham, September 2017
- Thameside Stage 1 Surface Water Management Plan

### **Disclaimer**

1.9 MEC has completed this report for the benefit of the individuals referred to in paragraph 1.1 and any relevant statutory authority which may require reference in relation to approvals for the proposed development. Other third parties should not use or rely upon the contents of this report unless explicit written approval has been gained from MEC.

1.10 MEC accepts no responsibility or liability for:

- The consequence of this documentation being used for any purpose or project other than that for which it was commissioned;
- The issue of this document to any third party with whom approval for use has not been agreed.

## 2.0 POLICY CONTEXT

### National Planning Policy Framework

- 2.1 The National Planning Policy Framework (NPPF) was published and updated most recently in December 2024 by the Department for Levelling Up, Housing, and Communities.
- 2.2 The NPPF is the primary source of national planning guidance in England, setting out the Government's planning policies for England, and how they are expected to be applied by local councils.
- 2.3 'Chapter 14: Meeting the challenge of climate change, flooding, and coastal change' outlines the guiding principles for managing flood risk as part of the planning process, notable paragraphs 170-182.
- 2.4 The Planning Practice Guidance (PPG) sets out the vulnerability to flooding of different land uses. It encourages development to be in areas of lower flood risk where possible and stresses the importance of preventing increases in flood off site to the wider catchment.
- 2.5 The PPG also states that alternative sources of flooding, other than fluvial (river flooding), should be considered when preparing an FRA. The document also includes a series of tables that define Flood Zones, the flood risk vulnerability classification of development land use, and 'compatibility' of development within the defined Flood Zones.
- 2.6 Therefore, this FRA has been completed in line with the guidance and requirements of the NPPF and PPG.

### Local Plan

- 2.7 The Gravesham Local Plan Core Strategy was adopted in September 2014. The Local Plan Core Strategy sets out how land within the authorities' boundaries can be used and developed, providing policies which the Council uses to determine planning applications. The plan aims to ensure future growth and changes to the district are appropriate to local needs now and in the future.
- 2.8 More generally, the lists policies that guide the design and principles of all development within the authority's land. Those relevant to this FRA are summarised as follows;
  - Policy CS18: Climate Change

### Local SFRA

- 2.9 The Kent Thameside Delivery Board Strategic Flood Risk Assessment of Kent Thameside (SFRA) was published in December 2005. The SFRA was produced to provide an appropriate evidence base for the Local Plan and provide a summary of flood risk across the district.
- 2.10 Appropriate background information has been used to inform this FRA and will be referenced accordingly.

## Local PFRA

2.11 The Kent County Council Preliminary Flood Risk Assessment Report (PFRA) was published in September 2011 and was prepared to assist Kent County Council meet its duties to manage local flood risk and deliver any legal requirements placed on it as Lead Local Flood Authority (LLFA) under the Flood Risk Regulations 2009.

2.12 Appropriate background information has been used to inform this FRA and will be referenced accordingly.

## Local Flood Risk Management Strategy

2.13 The Kent Local Flood Risk Management Strategy 2024-2034 (LFRMS) was published in June 2024 to comply with Section 9 of the Flood and Water Management Act 2010 and aims to provide a framework for meeting its requirements to develop, maintain, apply, and monitor a local strategy for flood risk management and how Kent County Council aim to achieve this.

2.14 The FRMS provides further information regarding surface water runoff, groundwater and sewer flooding and flood risk around the County and the introduction of flood risk alleviation schemes at various scales, including SuDS.

## Supplementary Planning Documents

2.15 The Kent County Council Flood Risk to Communities Gravesham was published in September 2017. This report aims to provide a summary of the main flood risks to the county, the key flood risk management assets/structures and any flood risk management plans or strategies that are in place for the area of Gravesham.

## 3.0 SITE DESCRIPTION

### Site Location and Features

3.1 The Ordnance Survey National Grid Reference (NGR) for the site is E:57119, N:172997. The site measures approximately 1.56ha in size. The site is located on Chalk Road, Higham. The current site area is formed of former agricultural buildings and open green space. The site is bounded to the north and west agricultural land, to the east by a railway line and to the south by Chalk Road.

**Figure 3.1: Site Location Plan**



## Topographic Data

3.2 Full details of the topographical survey are included in **Appendix D**. The site survey indicates that the site falls from south to north. Levels on site range from 7.61m AOD to 4.18m AOD.

## Flood Zone Maps and Flood Defence Data

3.3 Information relating to the current flood risk to the application site has been obtained from the Environment Agency and.gov.uk websites. There are multiple flood defences located near the site, the majority of these are labelled to be Natural High Ground. There is Natural High Ground running along the Thames and Medway Canal to the east of the site. The natural high ground was last assessed in November 2022 and is maintained by the Environment Agency. There is a flood defence located along the southern edge of the River Thames, this is an embankment defence. The defence was last assessed in November 2024 and is maintained as well by the Environment Agency.

## Watercourses & Hydrology

3.4 The closest designated watercourse is the Thames and Medway Canal located 0.2km to the east of the site. The River Thames is located 2.4km to the north of the site.

## Historic Flooding

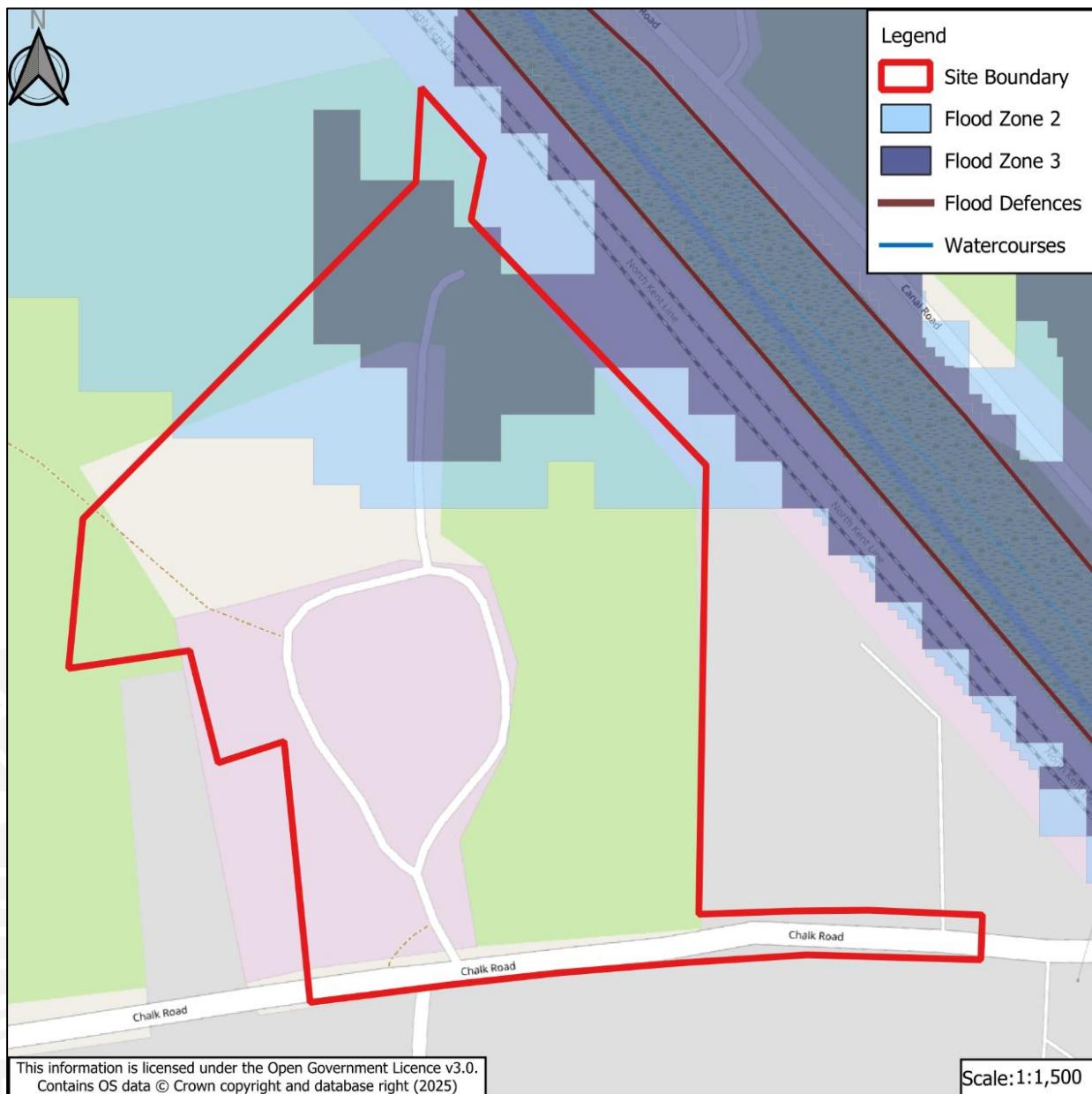
3.5 The EA Map for historical flooding shows no historic flooding has occurred within close proximity to the site. There are historic flood outlines located to the north of the site surrounding the River Thames and Thames and Medway Canal upstream from the site.

## Geological Data

3.6 The 1:50,000 British Geological Survey (BGS) viewer shows the site is underlain by a bedrock geology of the Thanet Formation, comprising sand, silt, and clay. There are superficial Head deposits comprising clay, silt, sand, and gravel within the north-western corner of the site. There are no other recorded superficial deposits within the site.

## Sewers

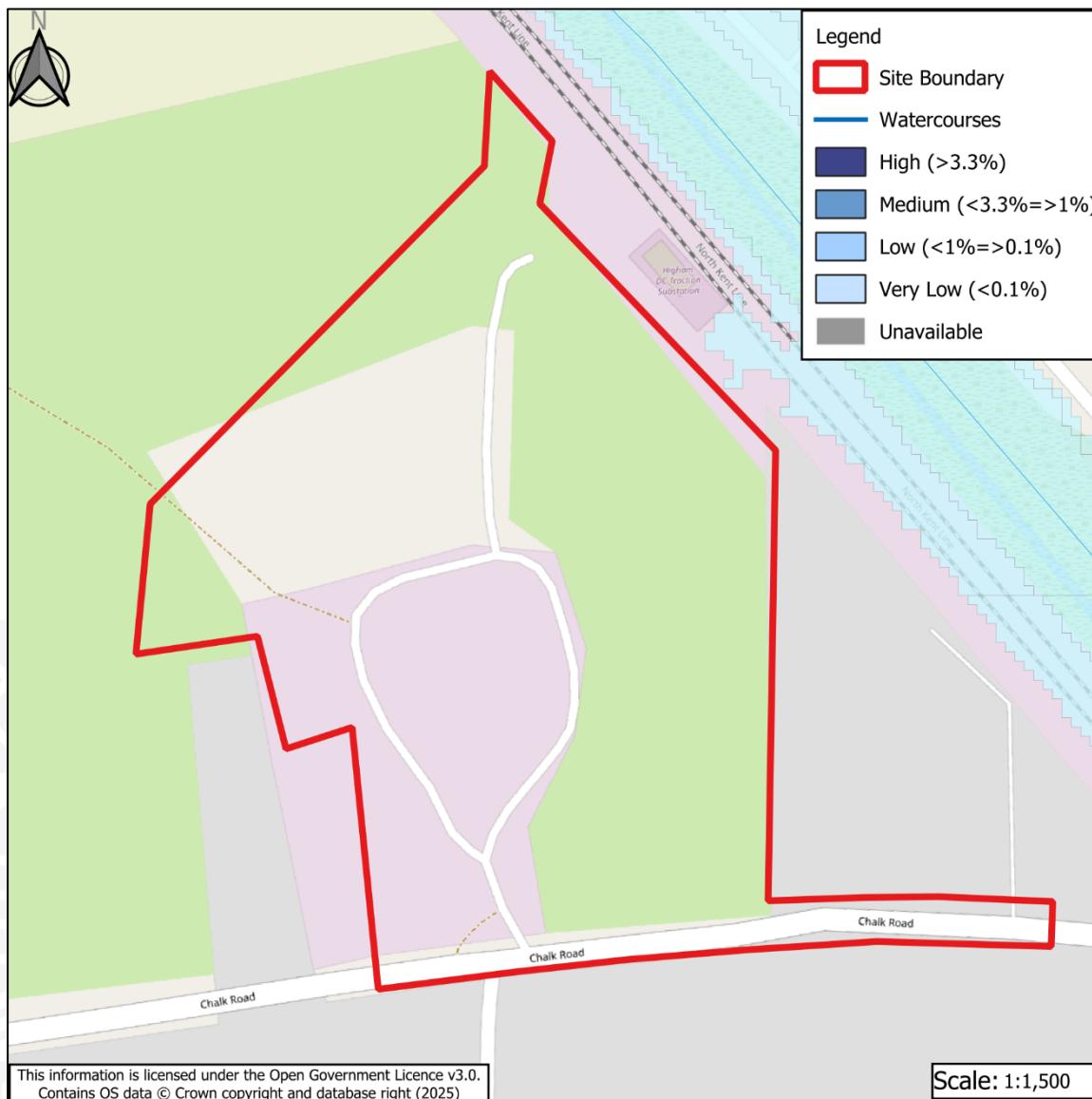
3.7 Sewer records have been obtained from Southern Water (SW) see **Appendix E**. The records show the presence of a 175mm foul sewer located to the south of the site along Chalk Road; there is a further 100mm foul sewer to the east of the site. There is an existing pumping station located along the southwestern boundary of the site that has a foul rising main leaving to the south.


3.8 A CCTV Survey was undertaken by Aquatech Drain Services in July 2025 (**Appendix F**). During the survey, the presence of an existing 225mm highway drain through the site was determined. The survey showed the drain flows from Chalk Road along the south of the site through the existing farm buildings up to the northeast corner of the site where it becomes culverted under the railway and out into the Thames and Medway Canal. The plan for the drain can be seen within **Appendix F**.

## 4.0 FLOOD RISK TO SITE

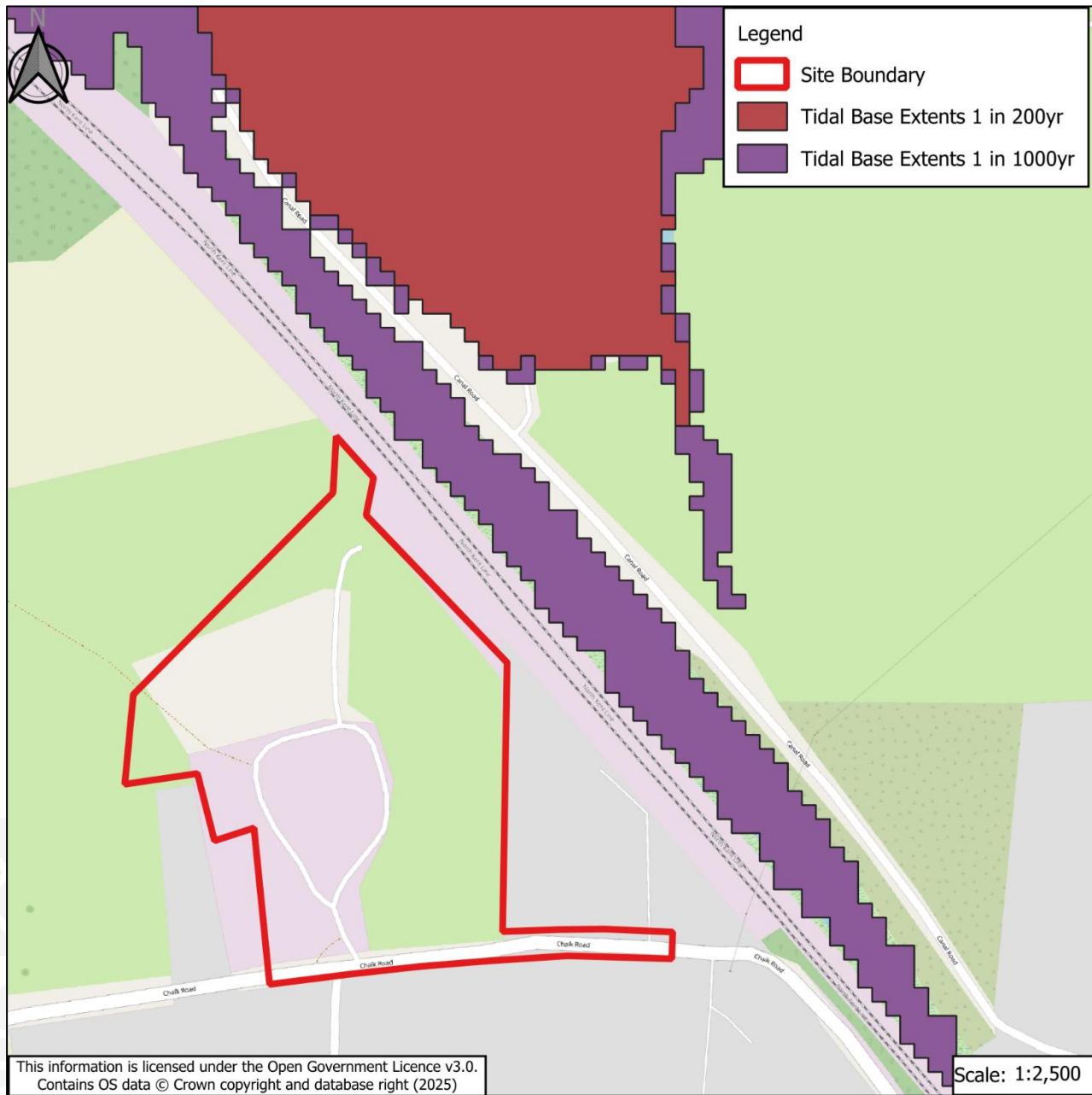
### Fluvial Flood Risk

4.1 The Environment Agency's Flood Map for Planning is shown in Figure 4.1. The map shows that most of the site is located within Flood Zone 1 (FZ1). There is an area in the north of the site located in Flood Zone 2 (FZ2) and Flood Zone 3 (FZ3). FZ1 is defined as land assessed as having an annual probability of river flooding of less than 1%. FZ2 is defined as land assessed as having an annual probability of river flooding between 0.1% and 1%. FZ3 is defined as land assessed as having an annual probability of flooding greater than 1%. It should be noted that the Flood Map for Planning does not consider the effect of flood defences on flood risk.


**Figure 4.1: Environment Agency's Flood Map for Planning.**



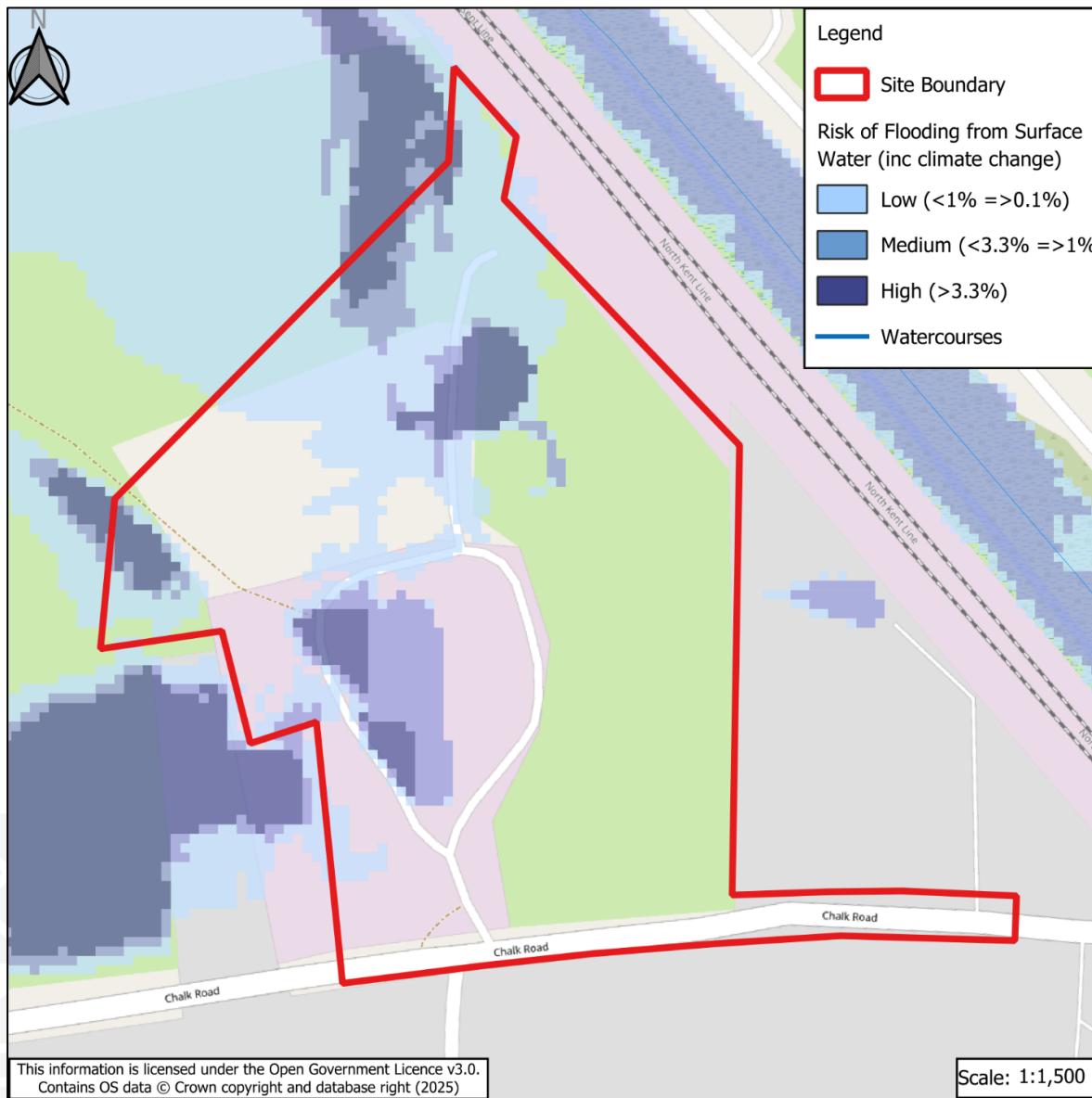
4.2 The site is shown to be in an area mapped to be at a reduced risk of flooding due to flood defences in the area. The flood defence found to the north of the site consists of natural high ground (ID 72621) and measures approximal 461.29m in length. The flood defence was last inspected in November 2022 and was assessed to be in Condition 3 (Fair: The defence shows some signs of deterioration, but still functions as intended). The flood defence is expected to be reassessed in November 2025. This defence is under the Kent South London and East Sussex water management area, but is owned and maintained by the Environment Agency.


4.3 While the EA Flood Map for Planning does not consider the effect of flood defences on flood risk, the EA have produced the Risk of Flooding from Rivers and Seas datasets, which consider the impact of flood defences on flood risk. The Risk of Flooding from Rivers and Seas mapping shows the site to be at very low risk of flooding when the defence is considered. An extract of this mapping is included as Figure 4.2.

**Figure 4.2: Environment Agency's Risk of Flooding from Rivers and Seas.**



4.4 Product 4 data was requested from the EA, however, the EA stated that they do not have any Product 4 information for this area. The EA did provide Product 6 information, which includes the modelled Tidal Extents from the River Thames. The Product 6 information shows that during a tidal event and with the defences in place, the site is not at risk from the 1 in 200 year event and the 1 in 1000 year event. Given the above, the site is at low risk from tidal flooding. An extract of this tidal flood mapping is included as Figure 4.3 below.


**Figure 4.3: Product 6 Tidal Flood Extents**



## Surface Water Flooding Risk Allocation

4.5 The Environment Agency Flood Risk from Surface Water Map, refer to Figure 4.4, indicates that the majority of the site is designated to be at low risk from surface water flooding. The map shows three areas within the site at low to high risk of surface water. One is located along the northern boundary. The second is within the northern central area, this area of risk is located over the existing pond on-site. The third area is located along the western edge, where the existing farm buildings are located.

**Figure 4.4: Environment Agency's Flood Risk from Surface Water Map (including 2050s epoch climate change )**



4.6 Modelled surface water depths, provided by the EA, are shown in Figure 4.5 and Figure 4.6 below. Figure 4.5 indicates that the areas located by the existing pond and buildings to the southwest have a high risk of surface water levels reaching up to 0.2m and 0.3m depth on site. Figure 4.6 shows that the existing pond has a high risk for surface water flood depths reaching 0.6m. There is a low risk across the whole site for surface water depths to be greater than 0.6m.

Figure 4.5: Modelled Surface Water Flood Depths of 0.2m and 0.3m



Figure 4.6: Modelled Surface Water Flood Depths of 0.6m, 0.9m and 1.2m



- 4.7 All proposed built development, in line with the requirements of Paragraph 175 of the NPPF, has been situated in areas of lowest risk. This ensures consistency with prevailing national and local guidance.
- 4.8 It should be noted, this mapping produced by the EA to provide the risk of flooding from surface water does not consider continual losses to the ground through infiltration or the impact of drainage features, including culverts. Underlying geology suggests that whilst any infiltration is likely to be at a low rate, there may be a slight reduction in flows across the site.

## Groundwater Flood Risk

4.9 During soakage testing undertaken by MEC in April 2025 (**Appendix G**) groundwater was encountered in two trial pits. Groundwater seepages were encountered at depths of 1.80m bgl and 2.00m bgl in the northeastern corner of the site. The site is not located within a groundwater Source Protection Zone (SPZ) and there are no groundwater abstractions recorded within 500m.

4.10 Given the above the risk of groundwater flooding to the site is considered medium.

## Other Flooding Risk

4.11 The Environment Agency Mapping shows that the site is not at risk of reservoir flooding, as such, the risk of flooding from reservoirs is low.

4.12 In line with the Thameside Stage 1 Surface Water Management Plan Watercourses and Drainage Systems Plan there appears to be no recorded sewer flooding incidents within the site area. In line with this sewer flooding will be regarded as low risk.

## 5.0 FLOOD RISK ASSESSMENT

### Flood Risk Assessment Methodology & Objectives

5.1 It is recognised that developments that are designed without regard to flood risk may endanger lives, damage property, cause disruption to the wider community, damage the environment, be difficult to insure and require additional expense on remedial works. Current guidance on development and flood risk identifies several key aims for development to ensure that it is sustainable in flood risk terms.

5.2 These aims are as follows:

- The development should not be at significant risk of flooding and should not be susceptible to damage due to flooding;
- The development should not be exposed to flood risk such that the health, safety and welfare of the users of the development, or the population elsewhere, are threatened;
- Safe access/egress to and from the development should be possible during flood events;
- The development should not increase flood risk elsewhere;
- The development should not prevent safe maintenance of watercourses or maintenance and operation of flood defences;
- The development should not be associated with an onerous or difficult operation and maintenance regime to manage flood risk. The responsibility for any operation and maintenance required should be clearly defined;
- Future users of the development should be made aware of any flood risk issues relating to the development;
- The development should not lead to the degradation of the environment; and
- The development should meet all of the above criteria for its entire lifetime, including consideration of the potential effects of climate change.

5.3 This Flood Risk Assessment is undertaken with due consideration of these sustainability aims and has been prepared to inform the proposed scheme.

### Project Scope

5.4 In order to achieve the aims outlined above, this Flood Risk Assessment has been undertaken in accordance with current best-practice guidance, including the PPG. A scoping study was initially undertaken to identify all potential sources of flooding at the site, which may warrant further consideration. Any potential flooding issues identified in the scoping study have subsequently been considered within this Flood Risk Assessment. The aim of the scoping study is to review all available information and provide a qualitative assessment of the flood risk to the site and the impact of the site on flood risk elsewhere. The report has been undertaken with due regard to the EA's National Standing Advice on Development and Flood Risk.

### Scoping Study

5.5 All potential sources of flooding must be considered for any proposed development.

5.6 Using the EA Flood Zone mapping, topographical survey and Ordnance Survey maps, a summary of the potential sources of flooding and a review of the potential risk posed by each source on the development area of the application site is presented in Table 5.1.

**Table 5.1: Potential Risks posed by Flooding Sources in accordance with the gov.uk Long-Term Flood Risk Map**

| Source                  | Risk |        |     |
|-------------------------|------|--------|-----|
|                         | High | Medium | Low |
| Fluvial                 |      |        | ✓*  |
| Tidal                   |      |        | ✓   |
| Surface Water           |      |        | ✓   |
| Groundwater             |      | ✓      |     |
| Sewer                   |      |        | ✓   |
| Artificial water bodies |      |        | ✓   |

\* While the Flood Map for Planning locates the site within Flood Zones 2 and 3, the site is at low risk due to the flood defence protecting the area, as shown within the Rivers and Seas mapping.

### Flood Risk Mitigation

5.7 It is vital that the correct mitigation is put in place to minimise the flood risk to the development. In accordance with the NPPF, this includes preventing harm from occurring to the users of the site as well as ensuring the development itself is protected. The below outlines further building mitigation measures that are recommended.

#### Fluvial Flood Risk Mitigation

5.8 The Environment Agency Flood Map for Planning shows most of the site is located within FZ1, with the north of the site located in FZ2 and FZ3. It should be noted that the Flood Map for Planning does not consider the effect of flood defences on flood risk.

5.9 The site is shown to be in an area mapped to be at a reduced risk of flooding due to flood defences. The site is protected by natural high ground (ID 72621) which is not considered as part of the flood map for planning. While the EA Flood Map for Planning does not consider the effect of flood defences on flood risk, the EA have produced the Risk of Flooding from Rivers and Seas datasets, does consider the impact of flood defences on flood risk. The Risk of Flooding from Rivers and Seas mapping shows the site to be at very low risk of flooding when the defence is considered.

5.10 Given the above, no further additional mitigation measures are required to address the low risk of fluvial flooding.

## Surface Water Flood Risk Mitigation

5.11 The Environment Agency Flood Risk from Surface Water Map indicates the site to be mostly at low risk from surface water flooding. The map shows three areas within the site at low to high risk of surface water flooding. One is located along the northern boundary. The second is within the northern central area, this area of risk is located over the existing pond on-site. The third area is located along the western edge where the existing farm buildings are located.

5.12 The modelled flood depths indicate that the areas located by the existing pond and buildings to the southwest have a high risk of surface water levels reaching up to 0.2m and 0.3m depth on site. While the area of the existing pond has a high risk for surface water flood depths reaching 0.6m.

5.13 A large proportion of the surface water flows noted on site are generated by the site itself and therefore the areas at risk from surface water will be managed with by the proposed on-site drainage system post development.

5.14 Permeable paving and positive drainage networks will be utilised to avoid any ponding of surface water above the ground. Surface water is likely to be collected by the proposed site-wide drainage infrastructure and conveyed to a proposed discharge point.

5.15 The risk of flooding will be managed at the development site post-development and the remaining risk will be low.

## Groundwater Flood Risk Mitigation

5.16 Groundwater was encountered during soakage testing undertaken by MEC in April 2025 (**Appendix G**). Groundwater seepages were encountered within the northeastern corner of the site at depths of 1.80m bgl and 2.00m bgl.

5.17 To mitigate against potential groundwater levels, suspended floor slabs will be used to create a void beneath the floor which will flood before the water rises to the houses. All drainage features will be lined with an impermeable membrane to prevent any groundwater ingress.

## **Vulnerability Classification of Proposed Development**

5.18 The National Planning Practice Guidance: Flood Zone and Flood Risk Tables provide information on the vulnerability classification of various developments. The proposed residential development end use of this site falls in the “more vulnerable” classification. A comparison of the ‘more vulnerable’ use with the development proposals within Flood Zone 1 areas shows development proposals are acceptable and in accordance with NPPF, as shown in Table 5.2.

**Table 5.2: Flood risk vulnerability and flood zone ‘compatibility’ from Flood Risk and Coastal Change – Planning Practice Guidance**

| Flood Risk Vulnerability classification | Essential Infrastructure        | Water compatible        | Highly Vulnerable | More Vulnerable         | Less Vulnerable         |
|-----------------------------------------|---------------------------------|-------------------------|-------------------|-------------------------|-------------------------|
| Flood Zone                              | Zone 1                          | ✓                       | ✓                 | ✓                       | ✓                       |
|                                         | Zone 2                          | ✓                       | ✓                 | Exception Test Required | ✓                       |
|                                         | Zone 3a                         | Exception Test required | ✓                 | ✗                       | Exception Test Required |
|                                         | Zone 3b ‘Functional Floodplain’ | Exception Test Required | ✓                 | ✗                       | ✗                       |

Key: ✓ *Development is appropriate*   ✗ *Development should not be permitted*

### Sequential Test

5.19 According to National Planning Practice Guidance: Flood Zone and Flood Risk, the Sequential Test gives preference for locating new developments in low-risk areas from all sources of flooding. However, if there is no allocated land within the low-risk areas that meets the policy aims of the published Local Authority Local Plan or Local Development Framework then other sites in higher flood risk categories can be considered for that development.

5.20 Paragraph 175 of the NPPF states:

*“... ensure that areas at little or no risk of flooding from any source are developed in preference to areas at higher risk. This means avoiding, so far as possible, development in current and future medium and high flood risk areas considering all sources of flooding including areas at risk of surface water flooding”.*

5.21 The site has been sequentially designed to stay out of the area at medium to high risk from surface water flooding to the north of the site. While the site is a very low risk form of fluvial flooding due to the flood defence, the site has been designed to be set outside the area allocated as Flood Zones 2 and 3, in addition to the surface water risk. An overlay of the flood risks associated with the site against the proposed layout can be seen on drawing 29524\_01\_203\_02a in **Appendix H**.

### Exception Test

5.22 Given that the proposed development is located outside the principle areas subject to medium and high risk surface water flooding and at very low risk from fluvial flooding, the proposed development is in accordance with NPPF and the exception test is not required.

## 6.0 SURFACE WATER MANAGEMENT STRATEGY

6.1 It is essential that the proposed development does not increase flood risk to adjacent land or downstream of the site and protects the development from flooding itself. To ensure that the flood risk is minimised, the drainage design will incorporate the following flood mitigation measures:

- The proposed development will include a surface water drainage system that will intercept runoff generated within the development. This will minimise the risk of flooding to the new buildings and also reduce the incidence of overland flows.
- The surface water drainage system will convey flows to the attenuation features on site. The surface water flows generated within the development up to and including a 1%AEP45CC will be stored on-site and discharged at a controlled rate of 2.0l/s.

### **Surface Water Outfall**

6.2 Surface water arising from developed sites should, as far as practical, be managed in a sustainable manner to mimic the surface water flows arising from the undeveloped site. When considering the surface water discharge the SuDS hierarchy needs to be adhered to. The SuDS hierarchy states that the options below must be adhered to in order of sustainability or evidenced otherwise before moving down to a less sustainable discharge method;

- Water Reuse
- Discharge at source (soakaway)
- Watercourse or waterbody
- Public Sewer

### Water Reuse

6.3 Consideration should be given to the implementation of rainwater harvesting systems, including but not limited to; water butts on residential dwellings, and rain gardens to ensure water re-use.

6.4 The first 5mm of rainfall will be collected via rainwater techniques. However, given the scale of development, and attenuation requirements calculated, it is, at this stage, not considered feasible to have collection of rainwater for non-potable uses to provide a wholesale means of surface water runoff attenuation within the site boundary.

6.5 As such, an alternative method of disposal should be investigated, with non-potable use further considered within the detailed designed of the proposed development.

### Discharge at Source

6.6 The 1:50,000 British Geological Survey (BGS) viewer shows the site is underlain by a bedrock geology of the Thanet Formation, comprising sand, silt, and clay. There are superficial Head deposits comprising clay, silt, sand, and gravel within the north-western corner of the site. There are no other recorded superficial deposits within the site.

6.7 Soakage testing was undertaken on site by MEC in April 2025 (**Appendix G**) in accordance with BRE365 Standards. Testing was undertaken in four locations and within the Thanet Formation. During testing insufficient soakage was recorded within all pits to enable a calculation of a representative infiltration rate. Seepages of groundwater were also encountered within two locations in the northeastern corner at depths of 1.80m bgl in SA03 and 2.00m bgl at SA04. Given the above it is deemed soakage is not a viable form of surface water outfall. An alternative method will be required.

#### Discharge to Watercourse

6.8 The closest designated watercourse is the Thames and Medway Canal located 0.2km to the east of the site. During the CCTV Survey undertaken by Aquatech Drain Services as seen in **Appendix F** it was confirmed that the existing highway drain that flows through the site culverts underneath the railway to the northeast of the site and into the Medway and Thames Canal. The culvert was shown to be overgrown during the survey, clearance works will be required.

#### Discharge to Sewers

6.9 In accordance with the drainage hierarchy, surface water will be discharged via an existing culvert to the north of the site.

#### **Land Use**

6.10 In order to calculate the drainage requirements an understanding of the land use on-site needs to be known. Table 6.2, below summarises the proposed land uses within the site. The current site area is formed of former agricultural buildings and open green space. The current land use has been calculated using the existing site plan and the post-development land use has been measured from the proposed layout.

**Table 6.2: Land Use Summary**

| Land Use Type                     | Existing Site Areas |            | Proposed Site Areas |            |
|-----------------------------------|---------------------|------------|---------------------|------------|
|                                   | ha                  | %          | ha                  | %          |
| Impermeable Areas                 | 0.39                | 34         | 0.58                | 37         |
| Green Landscape / Permeable areas | 1.17                | 66         | 0.99                | 63         |
| <b>Total</b>                      | <b>1.56</b>         | <b>100</b> | <b>1.56</b>         | <b>100</b> |

#### **Climate Change Allowances**

6.11 The influence of climate change on rivers and watercourses is likely to increase the frequency of flood events and the overall volume of water that passes the site. When considering surface water runoff from the site, the increase in peak rainfall intensity varies over the lifetime of the development. Where residential developments with a lifetime beyond the 2070s are proposed, the Flood Risk Assessments: Climate Change Allowances Guidance requires the use of the Upper-End Allowance for the 2070s epoch (2061 to 2125). However, in some locations, the allowance for the 2050s epoch is higher than that for the 2070s epoch. If

the 2050s epoch is higher than that for the 2070s epoch then the higher of the two allowances should be applied.

6.12 For the Medway Management Catchment, the 2050s epoch is higher than that for the 2070s for the 1%AEP and as such a 45% allowance will be applied with the design, see Table 6.3.

**Table 6.3: Peak Rainfall intensity allowance in small and urban catchments from the Flood Risk Assessments: Climate Change Allowances Guidance**

|                               | Total potential change anticipated for the '2050s' (2022 to 2060) |           | Total potential change anticipated for the '2070s' (2061 to 2125) |           |
|-------------------------------|-------------------------------------------------------------------|-----------|-------------------------------------------------------------------|-----------|
| Annual Exceedance Probability | Central                                                           | Upper End | Central                                                           | Upper End |
| 3.3 % AEP                     | 20%                                                               | 35%       | 20%                                                               | 35%       |
| 1 % AEP                       | 20%                                                               | 45%       | 20%                                                               | 40%       |

### Urban Creep Allowances

6.13 Urban creep is the conversion of permeable surfaces to impermeable ones over time, e.g., extensions to existing buildings. It has been shown that, over the lifetime of development, urban creep can increase impermeable areas by as much as 10%. An allowance of 10% for increases in the impermeable area due to urban creep over the lifetime of the development will be included in the drainage calculations and the total calculated impermeable area will be 0.64ha based on a 10% increase to proposed values, this value does not include urban creep for the school area, community area and care home.

### Discharge Rate

6.14 Existing runoff conditions have been calculated using the Modified Rational Method to calculate the Brownfield discharge rate. For the existing impermeable area of 0.39ha, the peak discharge rate has been calculated as 48.8l/s based on a rainfall intensity of 50mm/hr.

6.15 Greenfield runoff conditions have been calculated using the FEH module within Causeway Flow. For the proposed impermeable area of 0.58ha, the peak discharge rate has been calculated as 0.3l/s. As this is a low rate that could cause blockages in the system, surface water flows will discharge at a controlled rate of 2.0l/s. This is a 95% betterment of the Brownfield Discharge Rate.

### Drainage Strategy

6.16 The overall drainage strategy has been based on the land use table, discharge rates and an illustrative framework plan presented in **Appendix B**. In accordance with the National SuDS Standards, the strategy involves conveying surface water flows to multiple geo-cellular tanks and an attenuation basin before discharging to the existing culvert to the north.

6.17 The proposed drainage strategy is shown on drawing 29524\_01\_230\_01a in **Appendix I** and supporting calculations can be found in **Appendix J**.

6.18 Storage on site has been divided into three geo-cellular tanks and an attenuation basin; the storage requirements are broken down below.

#### Geo-Cellular Tank 1

6.19 Surface water flows for an impermeable area of 0.14ha (including urban creep) will be conveyed to the proposed geo-cellular tank 1 on site. A maximum storage volume of 87.21m<sup>3</sup> is required within the geo-cellular tank to allow sufficient for all surface water within the tank to discharge at a maximum rate of 2.0l/s and cater for all events up to and including the 1%AEP45CC event.

#### Geo-Cellular Tank 2

6.20 Surface water flows for an impermeable area of 0.06ha (including urban creep) will be conveyed to the proposed geo-cellular tank 2 on site. A maximum storage volume of 68.25m<sup>3</sup> is required within the geo-cellular tanks to allow sufficient for all surface water within the tank to discharge at a maximum rate of 2.0l/s and cater for all events up to and including the 1%AEP45CC event.

#### Geo-Cellular Tank 3

6.21 Surface water flows for an impermeable area of 0.06ha (including urban creep) will be conveyed to the proposed geo-cellular tank 3 on site. A maximum storage volume of 28.92m<sup>3</sup> is required within the geo-cellular tank to allow sufficient for all surface water within the tank to discharge at a maximum rate of 2.0l/s and cater for all events up to and including the 1%AEP45CC event.

#### Attenuation Basin

6.22 Surface water flows for an impermeable area of 0.38ha (including urban creep) and flows from geo-cellular tanks 1, 2 and 3 will be conveyed to the proposed attenuation basin on site. A maximum storage volume of 589.88m<sup>3</sup> is required within the attenuation basin to allow sufficient for all surface water within the tank to discharge at a maximum rate of 2.0l/s and cater for all events up to and including the 1%AEP45CC event.

6.23 A total storage volume of 774.26m<sup>3</sup> will be available within the proposed attenuation features to manage flows generated for all events up to and including the 1%AEP45CC event, see table 6.4 for a breakdown of the drainage features.

**Table 6.4: Drainage Features**

| Structures          | Impermeable Area (plus urban creep)                  | Proposed Discharge Rate           | Max Storage Requirements (1%AEP+45CC) |
|---------------------|------------------------------------------------------|-----------------------------------|---------------------------------------|
| Geo-Cellular Tank 1 | 0.14ha                                               | 2.0l/s                            | 87.21m <sup>3</sup>                   |
| Geo-Cellular Tank 2 | 0.06ha                                               | 2.0l/s                            | 68.25m <sup>3</sup>                   |
| Geo-Cellular Tank 3 | 0.06ha                                               | 2.0l/s into the attenuation basin | 28.92m <sup>3</sup>                   |
| Attenuation Basin   | 0.38ha plus flows from geo-cellular tanks 1, 2 and 3 | 2.0l/s                            | 589.88m <sup>3</sup>                  |
| <b>Total</b>        | <b>0.64ha</b>                                        | <b>2.0l/s</b>                     | <b>774.26m<sup>3</sup></b>            |

**Applicable SuDS Techniques**

6.24 The National Standards for Sustainable Drainage Systems that deal with SuDS cover a whole range of sustainable approaches to surface water drainage management including:

- source control measures including rainwater recycling and drainage;
- filter strips and swales, which are vegetated features that hold and drain water downhill mimicking natural drainage patterns;
- filter drains and porous pavements to allow rainwater and run-off to infiltrate into permeable material below ground and provide storage if needed; and
- basins and ponds to hold excess water after rain and allow controlled discharge that avoids flooding.

6.25 Each of the five SuDS considerations listed above is discussed below in Table 6.5, with reference to their suitability for the proposed development.

**Table 6.5: Suitability of SuDS techniques**

|                      | COMPONENT                                | SUITABILITY | REASON                                                                                                                                                                                   |
|----------------------|------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source Control       | Rainwater Harvesting                     | Yes         | Water butts could be used to store run-off from roofs before discharge into the drainage system. Any storage is not to be included in calculations.                                      |
|                      | Green Roofs                              | No          | This would not be appropriate given the scope and scale of the development.                                                                                                              |
|                      | Bio-retention Systems/ Rain Gardens      | Yes         | Rain Gardens could be used as standalone SuDS across the site but offer limited attenuation capacity. Therefore, they have not been included within the drainage strategy at this stage. |
| Proprietary Systems  | Proprietary bio-retention systems        | No          | More appropriate SuDS features can be accommodated within the development and are preferred.                                                                                             |
| Infiltration Devices | Permeable Paving                         | Yes         | Permeable paving is suitable for the proposed development within parking spaces.                                                                                                         |
|                      | Infiltration trenches/ Soakaways         | No          | Soakage testing proved that infiltration was not feasible.                                                                                                                               |
| Filtration           | Open Swales, Filter Strips/ Drains       | Yes         | Multiple swales will be used to convey surface water flows across the site.                                                                                                              |
| Retention/ Detention | Detention Basin, Attenuation Pond/ Tanks | Yes         | The proposed attenuation basin and geo-cellular tanks will provide surface water storage prior to discharge from the site.                                                               |

**Surface Water Quality**

6.26 The SuDS Manual CIRIA document C753, indicates the minimum treatment indices appropriate for contributing pollution hazards for different land use classifications. To deliver adequate treatment, the selected SuDS components should have a total pollution mitigation index (for each contaminant) that equals or exceeds the pollution hazard index.

6.27 When using more than one SuDS component in series, the mitigation indices are multiplied by a factor of 0.5. This is to account for the reduced performance of secondary or tertiary components associated with the already reduced inflow concentrations. The SuDS Mitigation Index from the additional components will be added together up to a maximum value of 0.95, regardless of components in series.

6.28 Surface water runoff from residential roofs will have a very low pollution hazard level, while the residential parking areas will have a low pollution hazard level, and all other traffic will have a medium pollution hazard level. The exact pollution hazard levels are shown in Table 6.6.

**Table 6.6: SuDS Mitigation Indices (from CIRIA SuDS Manual)**

| SuDS Component                                                              | Mitigation Indices     |            |              |
|-----------------------------------------------------------------------------|------------------------|------------|--------------|
|                                                                             | Total Suspended Solids | Metal      | Hydrocarbons |
| Residential Roofs                                                           | 0.2                    | 0.2        | 0.05         |
| Individual property driveways, residential car parks and low traffic roads. | 0.5                    | 0.4        | 0.4          |
| Permeable Paving                                                            | 0.7                    | 0.6        | 0.7          |
| Attenuation Basin                                                           | 0.5                    | 0.5        | 0.6          |
| <b>SuDS Mitigation Index</b>                                                | <b>0.85</b>            | <b>0.8</b> | <b>0.95</b>  |
| <b>Mitigation Requirement Met?</b>                                          | <b>Yes</b>             | <b>Yes</b> | <b>Yes</b>   |

6.29 For the very low to low pollution hazard levels generated at the site, the proposed attenuation basin and permeable paving would provide sufficient treatment in accordance with the Simple Index Approach.

### Exceedance and Flow Routing

6.30 The risk of overland flooding from adjacent land to dwellings is very low. The design of levels and features on the site will follow best practice by ensuring any overland flow on the site is routed safely away from dwellings and to areas of lowest risk on site. Any surcharging and subsequent flooding of sewers on or in the vicinity of the site will also be mitigated by the flood routing described above. As such the risk of flooding on site from exceedance events and flood flow routes is very low.

### Maintenance and Management

6.31 An integrated approach to the maintenance and management of SuDS systems is a requirement of the NPPF and by the Flood & Water Management Act 2010. The aim of a maintenance and management plan is to ensure that there is a clear understanding of drainage responsibilities and that a maintenance regime is implemented for all new drainage systems for the lifetime of the development, so they can continue to function as required.

6.32 The surface water drainage network is to be offered for adoption. The attenuation basins and geo-cellular tanks are likely to remain within private ownership and under a management company. However, this will be considered further at the detailed design stage.

---

- 6.33 All private drainage systems, including the SuDS features, will be maintained by landowners or by an appointed management company.
- 6.34 A proposed maintenance schedule which breaks down the maintenance requirements of the various proposed assets is shown in **Appendix K**.

## 7.0 FOUL WATER STRATEGY

7.1 According to The Building Regulations (2010), foul water drainage from new developments should be discharged into the following in order of priority:

- A public sewer, or;
- A private sewer communicating with a public sewer, or;
- A septic tank which has an appropriate form of secondary treatment, or;
- A cesspool.

7.2 Sewer records and a Developer Enquiry have been obtained from SW see **Appendix E**. The records show the presence of a 175mm foul sewer located to the south of the site along Chalk Road; there is a further 100mm foul sewer to the east of the site. There is an existing pumping station located along the southwestern boundary of the site that has a foul rising main leaving to the south.

7.3 Given the levels on site, it is proposed that foul water flows generated on site will have to be pumped first to allow for a gravity connection to be made. It is proposed and has been agreed with Southern Water that foul flows generated on site will discharge into the existing foul sewer along Chalk Road at MH1902. Southern Water has confirmed that improvement works, funded by infrastructure charges, will be required to accommodate the flows at 0.36l/s.

7.4 The proposed foul water drainage can be seen on drawing 29524\_01\_230\_01a in **Appendix J**.

## 8.0 CONCLUSION AND SUMMARY

8.1 MEC has been commissioned by Richborough to undertake a Flood Risk Assessment for a proposed development on Chalk Road, Higham. This assessment has been undertaken to ascertain the constraints of the development to the site and to assess the impact of the design, with respect to flood risk.

- The Environment Agency Flood Map for Planning shows most of the site is located within FZ1, with the north of the site located in FZ2 and FZ3. It should be noted that the Flood Map for Planning does not consider the effect of flood defences on flood risk.
- The site is shown to be in an area mapped to be at a reduced risk of flooding due to flood defences. The site is protected by natural high ground (ID 72621), which is not considered part of the flood map for planning. While the EA Flood Map for Planning does not consider the effect of flood defences on flood risk, the EA have produced the Risk of Flooding from Rivers and Seas datasets, which does consider the impact of flood defences on flood risk. The Risk of Flooding from Rivers and Seas mapping shows the site to be at very low risk of flooding when the defence is considered.
- Product 6 Data was acquired from the Environment Agency. The Product 6 information shows that during a tidal event and with the defences in place, the site is not at risk from the 1 in 200 year event and the 1 in 1000 year event. Given the above, the site is at low risk of tidal flooding.
- The Environment Agency Flood Risk from Surface Water Map indicates the site to be mostly at low risk from surface water flooding. The map shows three areas within the site at low to high risk of surface water flooding, along the northern boundary, within the northern central area, over the existing pond on-site and within the western edge where the existing farm buildings are located.
- The modelled flood depths indicate that the areas located by the existing pond and buildings to the southwest have a high risk of surface water levels reaching up to 0.2m and 0.3m depth on site. While the area of the existing pond has a high risk for surface water flood depths reaching 0.6m.
- A large proportion of the surface water flows noted on site are generated by the site itself and therefore the areas at risk from surface water will be managed with by the proposed on-site drainage system post development.
- During soakage testing undertaken by MEC in April 2025 groundwater was encountered in two trial pits. Groundwater seepages were encountered at depths of 1.80m bgl and 2.00m bgl in the northeastern corner of the site
- All other sources of flooding is considered low.
- All drainage features will be lined with impermeable membranes to stop groundwater ingress.
- An existing culvert to the north of the site was discovered during on-site visits. A CCTV survey has been issued to confirm the connectivity of the culvert. Once complete this report will be updated.
- Greenfield runoff conditions have been calculated using the FEH module within Causeway Flow. For the proposed impermeable area of 0.58ha, the peak discharge rate has been calculated as 0.3l/s. As this is a low rate that could cause blockages in the system, surface water flows will discharge at a controlled rate of 2.0l/s. This is a 95% betterment of the Brownfield Discharge Rate.
- In accordance with the National SuDS Standards, the strategy involves conveying surface water flows to multiple geo-cellular tanks and an attenuation basin before discharging to the existing culvert to the north.
- A total storage volume of 774.26m<sup>3</sup> will be available within the proposed attenuation features to manage flows generated for all events up to and including the 1%AEP45CC event.

- Additional drainage features including rain gardens and permeable paving will be used across the site and will provide extra storage on site and will act as a first treatment stage for any run-off and will ensure adequate surface water treatment is provided.
- Given the levels on site, it is proposed that foul water flows generated on site will have to be pumped first to allow for a gravity connection to be made. It is proposed and has been agreed with Southern Water that foul flows generated on site will discharge into the existing foul sewer along Chalk Road at MH1902.

8.2 With the above measures in place, the development of the site will not create any flood risk issues to the wider area.





**MEC**  
Consulting Group

# APPENDICES



## APPENDIX A



NOTES

No dimensions should be scaled during construction and any missing dimensions required should be requested and confirmed before proceeding. All dimensions must be checked on site and agreed with the client prior to construction.

The scale bar provided is for use so that the drawings can be scaled during the planning application process.



Scale bar 50mm at 1:1

**SITE BOUNDARY**

A 18.07.2025 RLB UPDATED TO INCL VIS SPLAYS.  
Project  
**LAND OFF CHALK ROAD  
LOWER HIGHAM  
GRAVESEND**

Title  
**LOCATION PLAN**

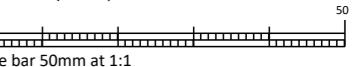
Scale 1:1250 @ A3 Date APRIL 2025  
Drawn JT Checked MB  
Drawing Number 8990/P100 Revision A

**Saunders**  
Architecture + Urban Design

saundersarchitects.com | 01707 385300 | London | Welwyn Garden City



# APPENDICES




## APPENDIX B



NOTES

This drawing to be read in accordance with the specification/Bills of Quantities and related drawings. No Dimensions to be scaled from this drawing. All stated dimensions to be verified on site and the Architect notified of any discrepancies.



KEY

- Site Boundary
- ■ ■ Railway line
- Proposed access/egress for all modes (subject to detailed design)
- ■ ■ Proposed location of SuDs/Attenuation features
- ■ ■ Proposed Green Amenity Space (including existing pond, children's play provision, footpaths, community orchard and drainage)
- ■ ■ Proposed Residential Development
- ■ ■ Proposed area for unallocated parking
- ■ ■ Focal space
- ■ ■ Recreational footpath
- ■ ■ Existing Trees
- ■ ■ Indicative proposed trees
- ■ ■ Proposed location for community orchard
- ■ ■ Proposed location for children's play

A 22.07.2025 MINOR AMENDMENTS FOLLOWING CLIENT COMMENTS. KB

Project

LAND OFF CHALK ROAD  
LOWER HIGHAM  
GRAVESEND

Title  
ILLUSTRATIVE DEVELOPMENT  
FRAMEWORK PLAN

Scale 1:1000 @ A3 Date JULY 2025  
Drawn KB Checked MB  
Drawing Number 8990/P103 Revision A

**Saunders**  
Architecture + Urban Design

saundersarchitects.com | 01707 385300 | London | Manchester | Bristol | Welwyn





# APPENDICES



## APPENDIX C



**Ben Oyston**  
Sent via email

**Flood and Water Management**  
Invicta House  
Maidstone  
Kent  
ME14 1XX  
**Website:** [www.kent.gov.uk/flooding](http://www.kent.gov.uk/flooding)  
**Email:** [suds@kent.gov.uk](mailto:suds@kent.gov.uk)  
**Tel:** 03000 41 41 41  
**Our Ref:** NON/2025/105762  
**Date:** 8 July 2025

**Application No:** PRE APP

**Location:** Chalk Road, Higham, ME3 7JY

**Proposal:** Development comprising of up to 40 residential dwellings.

Thank you for your enquiry in relation to the above site.

We have reviewed our records that we hold for your site and we can provide you with the following information:

### **Site Conditions**

The proposed development is located to the north of Chalk Road and is bounded on one side by the railway and by a field along the northwestern boundary. Parts of the site are located within Flood Zones 2 and 3 according to the gov.uk Flood Map for Planning, but this represents an undefended scenario. Mapping for flood risk from rivers and the sea with defences places the site outside of any mapped flood extent, as this area appears to benefit from defences against tidal flood risk.

The Risk of Flooding from Surface Water map suggests that parts of the site would be at risk of flooding from overland surface water flow originating off-site in the low chance (between 0.1% and 1% AEP) scenario. Medium chance or greater (>1% AEP) scenarios highlight some flooding extents, which may be associated with topographical low points or areas adjacent to existing buildings. A review of Google Earth imagery indicates that these areas flood regularly and to a significant extent.

### **Historic Flood Events**

There are no reports of highway flooding occurring on Chalk Road local to the site occurring within the last 5 years.

### **Local Surface Water Features and Drainage Assets**

As mentioned previously, it is unclear whether any existing surface water drainage infrastructure is present to serve the existing buildings on the site. A review of highway drainage records notes the presence of an assumed highway drain crossing the site and outfalling local to the pond or culvert. A copy of the sketch plan we hold is included in the mapped information attached to this letter.

It is considered that an existing culvert may be present outside the site boundary to the north, but we have no records to confirm the onward connectivity of any culverts present heading towards the local watercourses. There is also the possibility that this culvert may be blocked, which could explain the extent of flooding visible in Google Earth imagery. This also could be indicative of the ground having a low permeability.

### **Other Identified Flood Issues or Ground Conditions**

British Geological Survey mapping indicates that the site is underlain by the Thanet Formation, with some areas of superficial Head Deposits. This geology generally offers low to moderate permeability. Given that the area is relatively low-lying, it is also likely that groundwater is relatively shallow.

A site-specific ground investigation will be essential for developing a drainage strategy, to assess the infiltration potential of the soils and identify the depth to the groundwater level. Ongoing groundwater level monitoring is strongly recommended to establish the highest seasonal groundwater level beneath the site.

### **Recommendations on Surface Water Management**

New national standards for sustainable drainage systems (SuDS) were released by DEFRA on 19 June 2025. KCC is currently reviewing these standards for incorporation into a future update of its Drainage and Planning Policy Statement. In the interim, we strongly recommend referencing these standards during the development of the Drainage Strategy.

At present, it is proposed to utilise a controlled outflow towards an existing off-site culvert. However, given the considerable uncertainties and potential issues with flooding downstream, we would be unable to support discharge to the culvert as things stand. Additionally, we presume the asset is outside the applicant's control, and using this point as an outfall would require drainage to be installed outside the redline boundary of the development.

In line with the drainage hierarchy in Standard 1 of the latest technical standards, we recommend prioritising water reuse and source control features. These will be essential to promote infiltration of surface water close to the source where it cannot be reused.

As outlined above, infiltration constraints are likely, and site-specific ground investigation will be essential to inform the drainage strategy. It may be possible to maximise the use of permeable surfaces (e.g. permeable driveways, parking areas, etc.) to serve hard standings and roofs. These features can be used successfully in lower permeability soils while maintaining an unsaturated zone above the groundwater.

For other areas, shallow open infiltration features such as roadside swales and shallow infiltration basins may be suitable, subject to ground conditions. Combined with other source control features, it may be possible to manage all surface water within the site boundary, including interception of the first 5mm of rainfall (as noted in Standard 2 of the new national standards), while also providing water quality, amenity, and biodiversity benefits where suitably detailed.

Should infiltration not be viable for the discharge of all surface water generated by the development, it appears that an alternative outfall may not be feasible without further investigation and securing drainage rights in perpetuity.

We would also note that the existing drain present, assumed to be a highways drain, would need to be accommodated or diverted as part of the proposals for the development. It should be noted that it is an offence to alters, obstructs or interferes with a drain or barrier which has been constructed, laid or erected for the purposes of highway drainage without the consent of the highway authority, Kent County Council. In this instance, a connection to the highway drain would not be permitted, given the issues downstream.

We would also recommend contacting Network Rail and Environment Agency to determine if they have any records of culverts crossing the railway into the nearby canal, which is designated a 'main river'.

For modelling drainage systems, we recommend using a Cv value of 1 when modelling the impermeable area drained to the proposed SuDS. We also refer you to Table S3.1 – *Factors of Safety for Use in the Hydraulic Design of Infiltration Systems* (RP 156, CIRIA) when considering safety factors for sizing infiltration features.

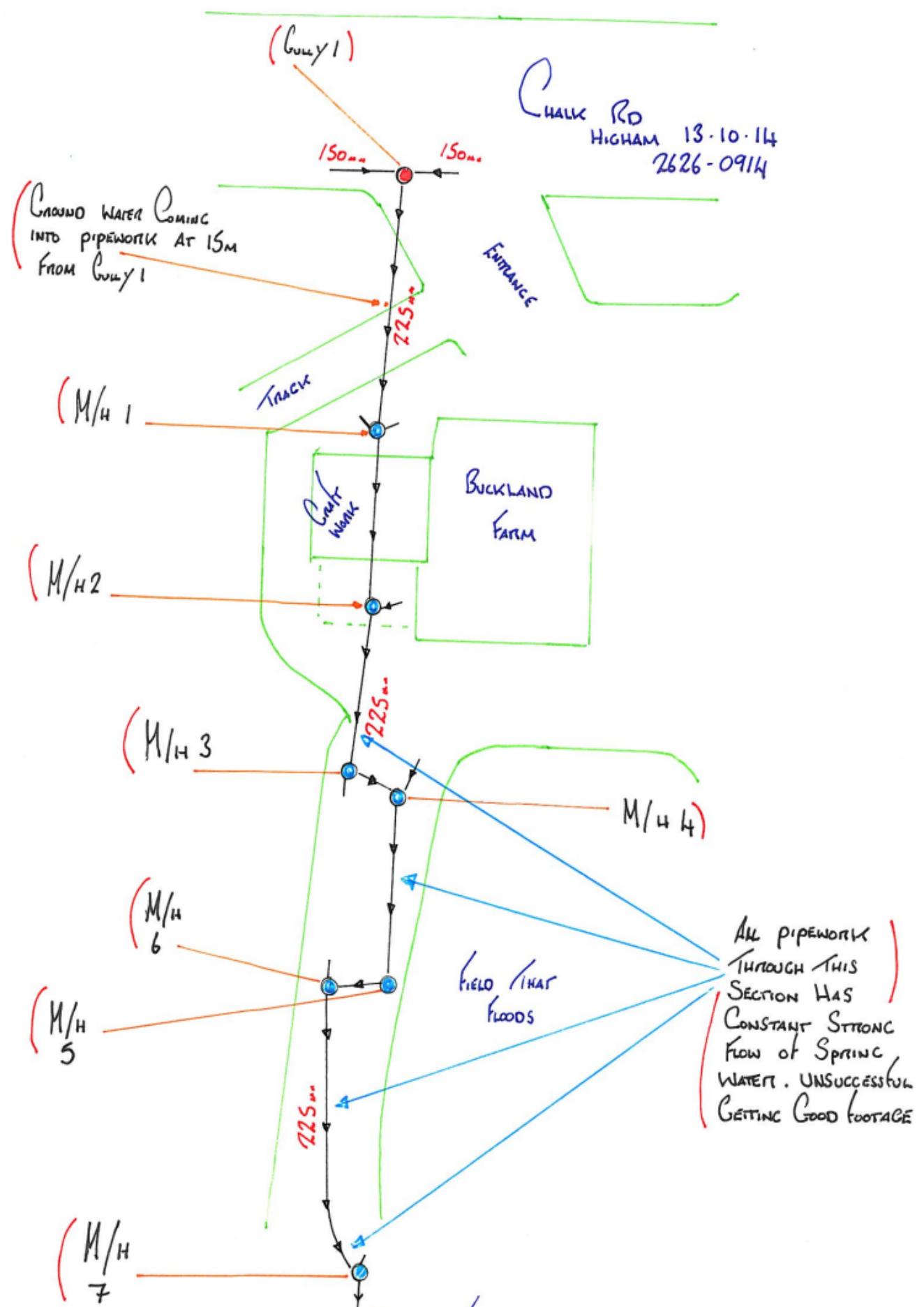
Consideration must also be given to the management of overland flows originating off-site. Any flooding from off-site sources for the 1% AEP event should be managed on-site or safely routed through the site, ensuring that downstream risks are not increased compared to the pre-development scenario.

### **Climate Change Allowances**

As of 10 May 2022, the Environment Agency's climate change allowances have been updated. This includes revisions to the *Peak Rainfall Intensity Allowances* used in applying climate change percentages to new drainage schemes.

The LLFA now seeks that the 'upper end' allowance is applied for both the 30-year (3.3%) and 100-year (1%) storm scenarios. The latest information and maps can be found at the following link:

<https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances>


Please note that if the allowance for the 2050s epoch is higher than that for the 2070s epoch for the 100-year (1%) storm scenario, we would expect the higher of the two to be used for developments with a lifetime beyond 2061.

I trust this information assists with your enquiries.

Yours faithfully,

**Alex Brauningger**  
Senior Flood Risk Officer  
Flood and Water Management

Enc. Sketch map of highway drainage dated 13/10/2014



## Ben Oyston

---

**From:** SUDS@kent.gov.uk  
**Sent:** 09 July 2025 16:46  
**To:** Ben Oyston  
**Subject:** RE: Response To Application Number PRE APP at Chalk Road, Higham, ME3 7JY

Dear Ben

Thanks for your email.

In terms of the location of the basin, given the location is defended, we would not raise concern as to the siting of the basin. Our primary concern would be with being able to secure an effective outfall for the development for its lifetime. If the culvert can be cleared by the responsible parties, and outfall to it secured in perpetuity of the development, then it may be an alternative.

Anecdotally it appears that flooding north of the site has been an issue for at least a decade or longer, but not sure to what degree this would be within your client's control to resolve. If you have commissioned surveys, then this may help with assessing the issue further and the viability of connection via culverts or watercourse.

For that reason, our response sought to promote an infiltration first approach. It appears you have already ruled out infiltration, or at least solely infiltration, but we would still recommend seeking opportunities for inception losses via inclusion of suitable SuDS devices to meet with the expected upcoming national standards which promote this further, accepting they may need overflow to a wider network.

Best Regards

**Alex Brauninger** | Senior Flood Risk Officer | Kent County Council | Invicta House, County Hall, Maidstone, ME14 XQ | Phone: 03000 41 81 81 | [www.kent.gov.uk/flooding](http://www.kent.gov.uk/flooding) | @KCC\_FWM

---

**From:** Ben Oyston <[ben.oyston@m-ec.co.uk](mailto:ben.oyston@m-ec.co.uk)>  
**Sent:** 09 July 2025 15:40  
**To:** SUDS - GT <[SUDS@kent.gov.uk](mailto:SUDS@kent.gov.uk)>  
**Subject:** RE: Response To Application Number PRE APP at Chalk Road, Higham, ME3 7JY

Hi Alex,

Thank you for sending this across.

I just had a couple of quick follow up questions if that is okay.

The first one is regarding the location of the proposed basin. The location of the basin I have sent across to you in the preliminary drainage strategy sketch shows part of the basin to lie within Flood Zone 2. Within your response you discuss the fact that the site is defended and under these defended conditions the site is outside an area of risk. With these parameters would that location of the basin be acceptable?

The second query is regarding the proposed outfall. Works have been instructed to understand the condition and connectivity of the culvert located to the north. If it is deemed that the culvert has connectivity and can be cleared, assuming land ownership is agreed too, would this be a viable outfall from your perspective? Soakage testing was undertaken on site and deemed soakage to not be a viable form of outfall.

Kind regards,

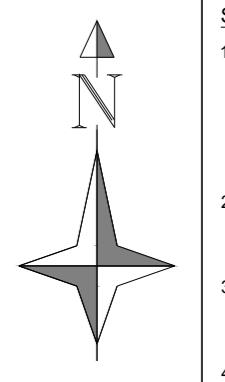


# APPENDICES



## APPENDIX D

| Level Datum:                | O.S (G.P.S Verified) |              |           |             |
|-----------------------------|----------------------|--------------|-----------|-------------|
| Grid Orientation:           | O.S (G.P.S Verified) |              |           |             |
| <b>Station Information:</b> |                      |              |           |             |
| Station                     | Easting (m)          | Northing (m) | Level (m) | Description |
| ST1                         | 571142.255           | 173009.801   | 5.114     | Nail        |
| ST2                         | 571106.234           | 172995.911   | 5.775     | Nail        |
| ST3                         | 571115.190           | 172960.110   | 6.151     | Nail        |
| ST4                         | 571136.712           | 172940.959   | 6.616     | Nail        |
| ST5                         | 571153.236           | 172974.216   | 5.969     | Nail        |
| SJ1                         | 571249.561           | 172931.923   | 7.596     | Nail        |
| SJ2                         | 571291.890           | 172924.651   | 8.100     | Nail        |
| SJ3                         | 571348.507           | 172857.105   | 9.911     | Nail        |
| SJ4                         | 571407.630           | 172775.961   | 12.651    | Nail        |
| SJ5                         | 571459.719           | 172710.564   | 12.360    | Nail        |
| SJ6                         | 571452.261           | 172643.205   | 14.163    | Nail        |


1 . 4d

1 30

15d

1.6d

1 7d



**NOTES**

PLAN SHOULD BE USED FOR ITS ORIGINAL PURPOSE ONLY. MEC CONSULTING GROUP ACCEPTS NO RESPONSIBILITY FOR ITS DRAWINGS IF THEY ARE SUPPLIED TO ANY OTHER PARTY OTHER THAN THE ORIGINAL CONTRACTOR.

INFORMATION SHOWN HAS BEEN SURVEYED IN ACCORDANCE TO THE ACCURACY OUTLINED WITHIN THE ORIGINAL FEE QUOTATION.

PARCEL BOUNDARIES SHOWN ARE PHYSICAL SITE FEATURES AND MAY NOT REPRESENT LEGALLY CONVEYED OWNERSHIP.

FEATURES SHOWN WERE CURRENT AT THE TIME OF SURVEY. SOME FEATURES MAY HAVE BEEN MISSED OR OMITTED DUE TO ACCESS, PARKED VEHICLES, TEMPORARY STRUCTURES OR DENSE VEGETATION.

GLOBAL NAVIGATION AND SATELLITE SYSTEM (GNSS) DETAIL AND ORDNANCE STATIONS HAVE BEEN CAPTURED AND TRANSFORMED ONTO ORDNANCE SURVEY NATIONAL GRID AND DATUM OSGB35 USING THE O.S. ONE NETWORK (OS NET) TRANSFORMATION AND GEOID MODEL OSTN15 & Elevation 115.

LEVELS SHOWN ARE RELATIVE TO THE GNSS REFERENCE STATION LEVELS CAPTURED AT SURVEY CONTROL STATIONS.

LEVELS ARE REPRESENTATIVE TO METRES ABOVE ORDNANCE DATUM.

SEE REFER TO THE SURVEY STATION TABLE TO ENABLE ESTABLISHMENT OF A SITE GRID.

SEE NOTE THAT THE 3D TOPOGRAPHICAL SURVEY CAN BE ACCESSED BY DOWNLOADING 3D LAYERS VIA THE LAYER FILTER IN THE LAYER MANAGER.

REFERENCE GRID IS 20m X 20m.

UNITS ARE IN METRES UNLESS OTHERWISE SPECIFIED.

THE SURVEY SHOWN UNDERTAKEN BY MEC CONSULTING GROUP IN JULY 2025.

ALL LEGEND DETAIL MAY BE APPLICABLE IN THIS DRAWING. IF ANY INFORMATION IS REQUIRED, PLEASE INFORM MEC CONSULTING GROUP.

SEE NOTE THE ADDITIONAL SCHOOL LANE TOPOGRAPHICAL SURVEY CAN BE REVIEWED ON SHEET 8.

## TOGRAPHICAL LEGEND

|                |                           |
|----------------|---------------------------|
| PLANTED FOREST | SURFACE KEY               |
|                | BP BLOCK PAVING           |
|                | CPS CONCRETE PAVING SLABS |
|                | TT TACTILE PAVING         |

---

|                               |      |      |      |          |
|-------------------------------|------|------|------|----------|
| HWAY EXTENSION & SCHOOL LANE  | DG   | GS   | AB   | 08.08.25 |
| ITION OF NEWLY FOUND MANHOLES | GS   | GS   | AB   | 28.07.25 |
| DITIONAL SURVEY EXTENTS ADDED | SJ   | GS   | AB   | 24.07.25 |
| LDING VOLUMES ADDED           | DG   | GS   | AB   | 23.04.25 |
| ST ISSUE                      | SJ   | DG   | AB   | 04.04.25 |
| AMENDMENTS:                   | DRN: | CHK: | APP: | DATE:    |

CHALK ROAD,  
HIGHAM

# TOEFL® TEST OVERVIEW

# RICHBOROUGH

NUMBER: 29524\_06\_170\_01

**FOR INFORMATION**

**MEC**  
Consulting Group

Telephone: 01530 264 753  
Email: group@m-ec.co.uk  
Website: www.m-ec.co.uk

Consulting Group  
Birmingham | Brighton | Leicester  
Website: [www.m-ec.co.uk](http://www.m-ec.co.uk)



# APPENDICES



## APPENDIX E



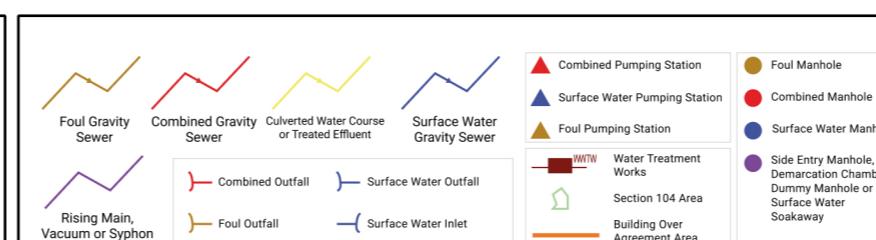
(c) Crown copyright and database rights 2025 Ordnance Survey AC0000808122

Date: 14/03/25

Scale: 1:1250

Map Centre: 571054, 172983

Data updated: 26/02/25


Our Ref: 1716756 - 1

Wastewater Plan A3  
Powered by digdat

The positions of pipes shown on this plan are believed to be correct, but Southern Water Services Ltd accept no responsibility in the event of inaccuracy. The actual positions should be determined on site. This plan is produced by Southern Water Services Ltd (c) Crown copyright and database rights 2025 Ordnance Survey AC0000808122. This map is to be used for the purposes of viewing the location of Southern Water plant only. Any other uses of the map data or further copies is not permitted.

WARNING: BAC pipes are constructed of Bonded Asbestos Cement.

WARNING: Unknown (UNK) materials may include Bonded Asbestos Cement.



|                        |
|------------------------|
| emma.harris@m-ec.co.uk |
| 29524                  |
|                        |



from  
Southern  
Water.





from  
**Southern Water** 

Emma Harris  
The Old Chapel  
Hugglescote  
Leicestershire  
LE67 2GB

Your ref  
19603

Our ref  
DSA000041866

Date  
31 March 2025

Contact  
Tel 0330 303 0119

Dear Mrs Harris,

**Level 1 Capacity Check Enquiry: Chalk Road, Higham, Gravesham, ME3 7JY.**

We have completed the capacity check for the above development site and the results are as follows:

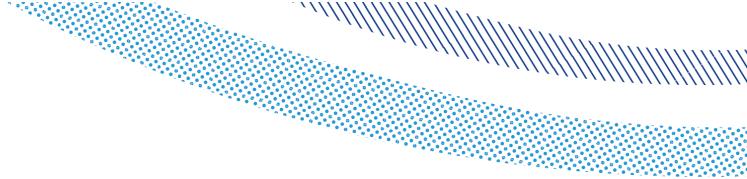
### **Foul Water**

The enquiry has been reassessed to determine the capacity available for 0.36 l/s at manhole reference TQ71721902 (Grid Reference: 571134, 172921).

There is currently inadequate capacity within the foul sewerage network to accommodate a foul flow of 0.36 l/s for the above development at manhole reference TQ71721902. The proposed development would increase flows to the public sewerage system which may increase the risk of flooding to existing properties and land. Additional off-site sewers or improvements to existing sewers will be required to provide sufficient capacity to service the development. Southern Water has a duty to provide Network capacity from the point of practical connection (point of equivalent or larger diameter pipe) funded by the New Infrastructure Charge.

Southern Water aim to provide this within 24 months following the date that planning has been granted for developments not identified as strategic sites in our current business plan. Strategic sites are larger developments and will often take longer than 24 months for a full solution to be provided.

The nearest point where capacity is currently available is at Whitewall Creek WwTW. Rights are not issued for a direct connection to Wastewater Treatment Works (WTW). Please note that connection to the WTW will have to be agreed by Southern Water Services before being carried out.


### **New Infrastructure Charging**

Please note as of 1st April 2018 we have moved to the "New Connections Services Charging Arrangements". We understand that this may cause uncertainty for customers, particularly where they may have already committed to a development based on previous charging arrangements. We have worked with our stakeholders and Water UK to agree a set of principles by which we will base our charges. Please read through our new charging arrangement documents available at the following link: [Connecting Charging Arrangements - Southern Water](#)

Alternatively, New Appointees and Variations (NAVs), also known as 'inset' companies, can provide new connection services or take ownership of the new water and wastewater connection

Southern Water, Southern House, Yeoman Road, Worthing, West Sussex, BN13 3NX  
[southernwater.co.uk](http://southernwater.co.uk)

Southern Water Services Ltd, Registered Office: Southern House, Yeoman Road, Worthing, West Sussex, BN13 3NX Registered in England No. 2366670



infrastructure provided for a new development. NAVs are appointed by Ofwat and replace the regional water company. It is for the developer to choose whether to use a NAV or the regional water company to supply services for new sites, according to certain legal criteria.

### **Connecting to our network**

It should be noted that this information is only a hydraulic assessment of the existing sewerage network and does not grant approval for a connection to the public sewerage system. A formal Sewer Connection (S106) application is required to be completed and approved by Southern Water Services. To make an application visit: [developerservices.southernwater.co.uk](http://developerservices.southernwater.co.uk)

Please note the information provided above does not grant approval for any designs/drawings submitted for the capacity analysis. The results quoted above are only valid for 12 months from the date of issue of this letter.

Please get in touch via the Get Connected customer dashboard if you have any queries.

Yours sincerely,

Future Growth Planning Team  
**Developer Services**

[southernwater.co.uk/developing-building/planning-your-development](http://southernwater.co.uk/developing-building/planning-your-development)



**MEC**  
Consulting Group

# APPENDICES



## APPENDIX F



**Project**

**Project Name:** Chalk Road

**Project Description:** CCTV Survey, Trace & Map

**Project Status:** Complete

**Project Date:** 25/07/2025

**Inspection Standard:** MSCC5 Sewers & Drainage GB (SRM5 Scoring)



## Table of Contents

| Project Name<br>Chalk Road                | Project Number | Project Date<br>25/07/2025 |
|-------------------------------------------|----------------|----------------------------|
| Project Information .....                 |                | P-3                        |
| Scoring Summary .....                     |                | P-4                        |
| Project Pictures .....                    |                | P-5                        |
| Project Summary .....                     |                | P-25                       |
| Cleaning Summary .....                    |                | P-27                       |
| Defect Grade Description (Section) .....  |                | P-28                       |
| Section Profile - 16/07/2025 - SW1X ..... |                | P-29                       |
| Section Summary .....                     |                | P-32                       |
| Section Item 1: SW1 > SW2 (SW1X) .....    |                | 6                          |
| Section Item 2: SW2 > SW3 (SW2X) .....    |                | 8                          |
| Section Item 3: SW3 > SW4 (SW3X) .....    |                | 10                         |
| Section Item 4: SW4 > SW5 (SW4X) .....    |                | 13                         |
| Section Item 5: SW5 > A (SW5X) .....      |                | 16                         |
| Section Item 6: SW1A > SW1 (SW1AX) .....  |                | 19                         |

## Project Information

|                            |                |                            |
|----------------------------|----------------|----------------------------|
| Project Name<br>Chalk Road | Project Number | Project Date<br>25/07/2025 |
|----------------------------|----------------|----------------------------|

### Client

**Company:** MEC Consulting Group  
**Department:** The Old Chapel  
**Street:** Station Road  
**Town or City:** Hugglescote  
**County:** Leicestershire  
**Post Code:** LE67 2GB  
**Phone:** 01530 264753



### Site

**Street:** Chalk Lane  
**Town or City:** Higham  
**County:** Kent  
**Post Code:** ME3 7JY

### Contractor

**Company:** Aquatech Drain Services Ltd  
**Description:** Drainage Contracor  
**Contact:** Connor  
**Street:** Holmbush Lane  
**Town or City:** Woodmancote  
**County:** East Sussex  
**Post Code:** BN5 9TL  
**Phone:** 01273 933705  
**Email:** [contact@aquatechdrains.co.uk](mailto:contact@aquatechdrains.co.uk)



AQUATECH DRAIN SERVICES

## Project Information

**Project Name**  
Chalk Road

**Project Number**

**Project Date**  
25/07/2025

### Project Drawing, Page 'Chalk Road'



## Scoring Summary

**Project Name**  
Chalk Road

**Project Number**

**Project Date**  
25/07/2025

### Structural Defects

Grade 3: Best practice suggests consideration should be given to repairs in the medium term.

Grade 4: Best practice suggests consideration should be given to repairs to avoid a potential collapse.

Grade 5: Best practice suggests that this pipe is at risk of collapse at any time. Urgent consideration should be given to repairs to avoid total failure.

| Item No. | PLR  | Grade | Description                                             |
|----------|------|-------|---------------------------------------------------------|
| 4        | SW4X | 3     | Joint displaced, 5mm displacement, 5% - 10% of diameter |

### Service / Operational Condition

Grade 3: Best practice suggests consideration should be given to maintenance activities in the medium term.

Grade 4: Best practice suggests consideration should be given to maintenance activity to avoid potential blockages.

Grade 5: Best practice suggests that this pipe is at a high risk of backing up or causing flooding.

| Item No. | PLR   | Grade | Description                                |
|----------|-------|-------|--------------------------------------------|
| 4        | SW4X  | 5     | Multiple defects                           |
| 5        | SW5X  | 5     | Roots, mass, 80% cross-sectional area loss |
| 6        | SW1AX | 3     | Multiple defects                           |

### Abandoned Surveys

| Item No. | PLR  | Description      |
|----------|------|------------------|
| 2        | SW2X | Survey abandoned |
| 4        | SW4X | Survey abandoned |
| 5        | SW5X | Survey abandoned |

### Information

These scoring summaries are based on the SRM grading from the WRc.

## Project Pictures

| Project Name | Project Number | Project Date |
|--------------|----------------|--------------|
| Chalk Road   |                | 25/07/2025   |



SW1



SW3



SW4



SW5



AQUATECH DRAIN SERVICES

Aquatech Drain Services Ltd

Holmbush Lane, Woodmancote

Tel. 01273 933705

contact@aquatechdrains.co.uk

## Project Summary

Project Name  
Chalk Road

Project Number

Project Date  
25/07/2025

### Pipe Summary

| No. | Type | PLR   | Upstream Node | Downstream Node | Road       | Town   | Use | Mat. | Profile        | Length         |
|-----|------|-------|---------------|-----------------|------------|--------|-----|------|----------------|----------------|
| 1   | SEC  | SW1X  | SW1           | SW2             | Chalk Road | Higham | S   | VC   | Circular 225mm | 3.00 m         |
| 2   | SEC  | SW2X  | SW2           | SW3             | Chalk Road | Higham | S   | VC   | Circular 225mm | 15.70 m        |
| 3   | SEC  | SW3X  | SW3           | SW4             | Chalk Road | Higham | S   | PVC  | Circular 225mm | 0.70 m         |
| 4   | SEC  | SW4X  | SW4           | SW5             | Chalk Road | Higham | S   | CO   | Circular 225mm | 23.50 m        |
| 5   | SEC  | SW5X  | SW5           | A               | Chalk Road | Higham | S   | CO   | Circular 450mm | 0.30 m         |
| 6   | SEC  | SW1AX | SW1A          | SW1             | Chalk Road | Higham | S   | CO   | Circular 225mm | 28.80 m        |
|     |      |       |               |                 |            |        |     |      |                | Total: 72.00 m |

### Pipe Levels

| No. | PLR   | Upstream Node | Upstream C.L. | Upstream I.L. | Upstream I.D. | Downstream Node | Downstream C.L. | Downstream I.L. | Downstream I.D. |
|-----|-------|---------------|---------------|---------------|---------------|-----------------|-----------------|-----------------|-----------------|
| 1   | SW1X  | SW1           |               |               | 1.130 m       | SW2             |                 |                 | 0.000 m         |
| 2   | SW2X  | SW2           |               |               | 0.000 m       | SW3             |                 |                 | 1.240 m         |
| 3   | SW3X  | SW3           |               |               | 1.240 m       | SW4             |                 |                 | 1.250 m         |
| 4   | SW4X  | SW4           |               |               | 1.250 m       | SW5             |                 |                 | 1.250 m         |
| 5   | SW5X  | SW5           |               |               | 0.000 m       | A               |                 |                 | 0.000 m         |
| 6   | SW1AX | SW1A          |               |               | 0.000 m       | SW1             |                 |                 | 1.130 m         |

### Pipe Summary by Profile

| Profile        | Total Length | No. Pipes |
|----------------|--------------|-----------|
| Circular 225mm | 3.00 m       |           |
| Circular 225mm | 15.70 m      |           |
| Circular 225mm | 0.70 m       |           |
| Circular 225mm | 23.50 m      |           |
| Circular 225mm | 28.80 m      |           |
| Circular 225mm | 71.70 m      | 5         |
| Circular 450mm | 0.30 m       |           |
| Circular 450mm | 0.30 m       | 1         |



AQUATECH DRAIN SERVICES

Aquatech Drain Services Ltd

Holmbush Lane, Woodmancote

Tel. 01273 933705

contact@aquatechdrains.co.uk

## Project Summary

Project Name  
Chalk Road

Project Number

Project Date  
25/07/2025

| Profile | Total Length | No. Pipes |  |
|---------|--------------|-----------|--|
| Total   | = 72.00 m    | 6         |  |

## Inspection Summary

| Pipe No. | Insp. No. | Upstream Node | Downstream Node | Dir. | Operator | Insp. Date | Insp. Time | Str | Ser | Final Observation                                     | Length         |
|----------|-----------|---------------|-----------------|------|----------|------------|------------|-----|-----|-------------------------------------------------------|----------------|
| 1        | 1         | SW1           | SW2             | DS   | Gg       | 16/07/2025 | 9:52       | 1   | 1   | MHF, Buried                                           | 3.00 m         |
| 2        | 1         | SW2           | SW3             | US   | Gg       | 16/07/2025 | 10:23      | 1   | 1   | SA, Unable to proceed with crawler camera due to lose | 15.70 m        |
| 3        | 1         | SW3           | SW4             | DS   | Gg       | 16/07/2025 | 10:43      | 1   | 1   | MHF                                                   | 0.70 m         |
| 4        | 1         | SW4           | SW5             | DS   | Gg       | 16/07/2025 | 14:42      | 3   | 5   | SA, Unable to remove roots to proceed.                | 23.50 m        |
| 5        | 1         | SW5           | A               | DS   | Gg       | 25/07/2025 | 13:17      | 1   | 5   | SA, Unable to remove roots to survey.                 | 0.30 m         |
| 6        | 1         | SW1A          | SW1             | US   | Gg       | 16/07/2025 | 15:12      | 1   | 3   | MHF, No access.                                       | 28.80 m        |
|          |           |               |                 |      |          |            |            |     |     |                                                       | Total: 72.00 m |

## Inspection Summary by Profile

| Profile        | Total Length     | No. Inspections |
|----------------|------------------|-----------------|
| Circular 225mm | 3.00 m           |                 |
| Circular 225mm | 15.70 m          |                 |
| Circular 225mm | 0.70 m           |                 |
| Circular 225mm | 23.50 m          |                 |
| Circular 225mm | 28.80 m          |                 |
| Circular 225mm | = 71.70 m        | 5               |
| Circular 450mm | 0.30 m           |                 |
| Circular 450mm | = 0.30 m         | 1               |
| <b>Total</b>   | <b>= 72.00 m</b> | <b>6</b>        |

## Project Summary

Project Name  
 Chalk Road

Project Number

Project Date  
 25/07/2025

| Defect Summary |           |               | CCTV Drainage Survey Observation Count |                  |                    |        |                      |                    |        |           |        |                   |           |       |                |                  |             |       |              |              |      |        |             |             |               |
|----------------|-----------|---------------|----------------------------------------|------------------|--------------------|--------|----------------------|--------------------|--------|-----------|--------|-------------------|-----------|-------|----------------|------------------|-------------|-------|--------------|--------------|------|--------|-------------|-------------|---------------|
|                |           |               | General                                |                  |                    |        | Structural Condition |                    |        |           |        | Service Condition |           |       |                | Misc             |             |       |              |              |      |        |             |             |               |
| Sect. No.      | Insp. No. | Upstream Node | Downstream Node                        | Insp. Length (m) | No. Grade 4/5 Obs. | Survey | Abandoned            | Camera Under Water | Cracks | Fractures | Broken | Deformed          | Collapsed | Holes | Surface Damage | Displaced Joints | Open Joints | Roots | Infiltration | Encrustation | Silt | Grease | Obstruction | Water Level | Line Deviates |
| 1              | 1         | SW1           | SW2                                    | 3.0              |                    |        |                      |                    |        |           |        |                   |           |       |                |                  |             |       |              |              |      |        | 1           |             |               |
| 2              | 1         | SW2           | SW3                                    | 15.7             |                    | 1      | 2                    |                    |        |           |        |                   |           |       |                |                  |             |       |              |              |      |        | 2           |             |               |
| 3              | 1         | SW3           | SW4                                    | 0.7              |                    |        |                      |                    |        |           |        |                   |           |       |                |                  |             |       |              |              |      |        | 1           |             |               |
| 4              | 1         | SW4           | SW5                                    | 23.5             | 3                  | 1      |                      |                    |        |           |        |                   |           |       |                |                  | 1           | 8     |              |              | 2    | 1      | 2           |             |               |
| 5              | 1         | SW5           | A                                      | 0.3              | 1                  | 1      |                      |                    |        |           |        |                   |           |       |                |                  |             | 1     |              |              |      |        |             | 1           |               |
| 6              | 1         | SW1A          | SW1                                    | 28.8             |                    |        |                      |                    |        |           |        |                   |           |       |                |                  |             | 9     | 16           | 2            | 1    | 8      |             |             |               |
|                |           |               | Total:                                 | 72.0             | 4                  | 3      | 2                    |                    |        |           |        |                   |           |       |                |                  |             |       |              |              |      |        |             |             |               |



AQUATECH DRAIN SERVICES

Aquatech Drain Services Ltd

Holmbush Lane, Woodmancote

Tel. 01273 933705

contact@aquatechdrains.co.uk

## Cleaning Summary

Project Name  
Chalk Road

Project Number

Project Date  
25/07/2025

### Pipe Summary

| No. | Type | PLR   | Upstream Node | Downstream Node | Road       | Town   | Use | Mat. | Profile        | Length         |
|-----|------|-------|---------------|-----------------|------------|--------|-----|------|----------------|----------------|
| 1   | SEC  | SW1X  | SW1           | SW2             | Chalk Road | Higham | S   | VC   | Circular 225mm | 3.00 m         |
| 2   | SEC  | SW2X  | SW2           | SW3             | Chalk Road | Higham | S   | VC   | Circular 225mm | 15.70 m        |
| 3   | SEC  | SW3X  | SW3           | SW4             | Chalk Road | Higham | S   | PVC  | Circular 225mm | 0.70 m         |
| 4   | SEC  | SW4X  | SW4           | SW5             | Chalk Road | Higham | S   | CO   | Circular 225mm | 23.50 m        |
| 5   | SEC  | SW5X  | SW5           | A               | Chalk Road | Higham | S   | CO   | Circular 450mm | 0.30 m         |
| 6   | SEC  | SW1AX | SW1A          | SW1             | Chalk Road | Higham | S   | CO   | Circular 225mm | 28.80 m        |
|     |      |       |               |                 |            |        |     |      |                | Total: 72.00 m |

### Pipe Summary by Profile

| Profile        | Total Length     | No. Pipes |
|----------------|------------------|-----------|
| Circular 225mm | 3.00 m           |           |
| Circular 225mm | 15.70 m          |           |
| Circular 225mm | 0.70 m           |           |
| Circular 225mm | 23.50 m          |           |
| Circular 225mm | 28.80 m          |           |
| Circular 225mm | = 71.70 m        | 5         |
| Circular 450mm | 0.30 m           |           |
| Circular 450mm | = 0.30 m         | 1         |
| <b>Total</b>   | <b>= 72.00 m</b> | <b>6</b>  |

### Cleaning Summary

| Pipe No. | Cln. No. | Dir. | Operator | Cln. Date  | Cln. Time | Method | Contamination | Scale | No. Clns | Complete | Comments | Cln. Length |
|----------|----------|------|----------|------------|-----------|--------|---------------|-------|----------|----------|----------|-------------|
| 1        | 1        | DS   | Gg       | 16/07/2025 | 9:52      | Y      |               |       |          | Yes      |          | 3.00 m      |
| 2        | 1        | US   | Gg       | 16/07/2025 | 10:23     | Y      |               |       |          | No       |          | 15.70 m     |
| 3        | 1        | DS   | Gg       | 16/07/2025 | 10:43     | Y      |               |       |          | Yes      |          | 0.70 m      |
| 4        | 1        | DS   | Gg       | 16/07/2025 | 14:42     | Y      |               |       |          | No       |          | 23.50 m     |
| 5        | 1        | DS   | Gg       | 25/07/2025 | 13:17     | Y      |               |       |          | No       |          | 0.30 m      |



AQUATECH DRAIN SERVICES

**Aquatech Drain Services Ltd**  
 Holmbush Lane, Woodmancote  
 Tel. 01273 933705  
[contact@aquatechdrains.co.uk](mailto:contact@aquatechdrains.co.uk)

## Cleaning Summary

**Project Name**  
 Chalk Road

**Project Number**

**Project Date**  
 25/07/2025

| Pipe No. | Cln. No. | Dir. | Operator | Cln. Date  | Cln. Time | Method | Contamination | Scale | No. Clns | Complete | Comments      | Cln. Length    |
|----------|----------|------|----------|------------|-----------|--------|---------------|-------|----------|----------|---------------|----------------|
| 6        | 1        | US   | Gg       | 16/07/2025 | 15:12     | Y      |               |       |          | Yes      |               | 28.80 m        |
|          |          |      |          |            |           |        |               |       |          |          | <b>Total:</b> | <b>72.00 m</b> |

### Cleaning Summary by Profile

| Profile               | Total Length | No. Cleans     |
|-----------------------|--------------|----------------|
| Circular 225mm        | 3.00 m       |                |
| Circular 225mm        | 15.70 m      |                |
| Circular 225mm        | 0.70 m       |                |
| Circular 225mm        | 23.50 m      |                |
| Circular 225mm        | 28.80 m      |                |
| <b>Circular 225mm</b> | <b>=</b>     | <b>71.70 m</b> |
| <b>Circular 450mm</b> | <b>=</b>     | <b>0.30 m</b>  |
| <b>Circular 450mm</b> | <b>=</b>     | <b>0.30 m</b>  |
| <b>Total</b>          | <b>=</b>     | <b>72.00 m</b> |

## Defect Grade Description (Section)

**Project Name**  
Chalk Road

**Project Number**

**Project Date**  
25/07/2025

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>1:</b> | Brick: Minor structural defects.<br><br>Other: Minor structural defects, i.e. open or displaced joints without additional characteristics.<br><br><b>Acceptable structural condition.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>2:</b> | Brick: Circumferential cracking. Single longitudinal crack. Surface mortar loss (depth missing < 15 mm). Surface damage - spalling slight (breaking away of small fragments from the surface). Surface damage - wear slight (increased roughness).<br><br>Other: Circumferential cracking. Surface damage - spalling slight (breaking away of small fragments from the surface). Surface damage - wear slight (increased roughness).<br><br><b>Minimal collapse likelihood in the short term but potential for further deterioration.</b>                                                                                                                                                                                                                                                 |
| <b>3:</b> | Brick: Total mortar loss (depth missing > 50 mm) without other defects. More than one longitudinal crack (at a single location). Multiple cracking. Single bricks displaced. Deformation < 5%, no fracture and only moderate mortar loss. Surface damage - spalling medium (large areas of chipped brick). Surface damage - wear medium (entire surface of brick is missing).<br><br>Other: Fracture with no deformation or deformation < 5%. Longitudinal cracking or multiple cracking. Minor loss of level. Severe joint defects i.e. Surface damage - spalling medium. Surface damage - wear medium.<br><br><b>Collapse unlikely in the near future but further deterioration likely.</b>                                                                                             |
| <b>4:</b> | Brick: Total mortar loss (depth missing > 50mm) with deformation > 10%; deformation up to 10% and fractured; displaced or hanging brickwork; small number of missing bricks; dropped invert (drop > 20mm); moderate loss of level; surface damage - large spalling (entire surface of brick is missing); surface damage - large wear (entire surface of brick is missing).<br><br>Other: Broken; deformation up to 10% and broken; fracture with deformation 5-10%; multiple fractures; serious loss of level; serious joint defects with voids or soil visible (open joint with > 50mm soil or void visible or joint displacement > 25% of diameter); surface damage - entire area of pipe surface is missing or severely worn.<br><br><b>Collapse likely in the foreseeable future.</b> |
| <b>5:</b> | Brick: Already collapsed; missing Invert; deformation > 10% and fractured; displaced or hanging brickwork and deformation < 10%; extensive areas of missing brickwork.<br><br>Other: Already collapsed; deformation > 10% and broken; extensive areas of pipe fabric missing; fractures with deformation > 10%<br><br><b>Collapsed or collapse imminent.</b>                                                                                                                                                                                                                                                                                                                                                                                                                              |

## Section Profile - 16/07/2025 - SW1X

|                            |                |                            |
|----------------------------|----------------|----------------------------|
| Project Name<br>Chalk Road | Project Number | Project Date<br>25/07/2025 |
|----------------------------|----------------|----------------------------|

### Circular, 225 mm, 0 mm

| Item No. | Upstream Node | Downstream Node | Date       | Road       | Material           | Total Length | Inspected Length |
|----------|---------------|-----------------|------------|------------|--------------------|--------------|------------------|
| 1        | SW1           | SW2             | 16/07/2025 | Chalk Road | Vitrified clay     | 3.00 m       | 3.00 m           |
| 2        | SW2           | SW3             | 16/07/2025 | Chalk Road | Vitrified clay     | 15.70 m      | 15.70 m          |
| 3        | SW3           | SW4             | 16/07/2025 | Chalk Road | Polyvinyl chloride | 0.70 m       | 0.70 m           |
| 4        | SW4           | SW5             | 16/07/2025 | Chalk Road | Concrete           | 23.50 m      | 23.50 m          |
| 6        | SW1A          | SW1             | 16/07/2025 | Chalk Road | Concrete           | 28.80 m      | 28.80 m          |

**Total: 5 Inspections x Circular 225 mm, 0 mm = 71.70 m Total Length and 71.70 m Inspected Length**

### Circular, 450 mm, 0 mm

| Item No. | Upstream Node | Downstream Node | Date       | Road       | Material | Total Length | Inspected Length |
|----------|---------------|-----------------|------------|------------|----------|--------------|------------------|
| 5        | SW5           | A               | 25/07/2025 | Chalk Road | Concrete | 0.30 m       | 0.30 m           |

**Total: 1 Inspection x Circular 450 mm, 0 mm = 0.30 m Total Length and 0.30 m Inspected Length**

**Total: 6 Inspections = 72.00 m Total Length and 72.00 m Inspected Length**

## Section Summary

| Project Name | Project Number | Project Date |
|--------------|----------------|--------------|
| Chalk Road   |                | 25/07/2025   |

|                                            |         |
|--------------------------------------------|---------|
| Number of sections                         | 6       |
| Total length of sections                   | 72.00 m |
| Total length of inspected sections         | 72.00 m |
| Total length of not inspected sections     | 0.00 m  |
| Number of abandoned inspections            | 3       |
| Number of section inspection photos        | 39      |
| Number of section inspection videos        | 5       |
| Number of section inspection scans         | 0       |
| Number of section inclination measurements | 0       |

|                                         |                                 |
|-----------------------------------------|---------------------------------|
| <b>PLR:</b> SW1X                        | <b>Upstream Node:</b> SW1       |
| <b>Inspection Direction:</b> Downstream | <b>Downstream Node:</b> SW2     |
| <b>Inspected Length:</b> 3.00 m         | <b>Dia/Height:</b> 225 mm       |
| <b>Total Length:</b> 3.00 m             | <b>Material:</b> Vitrified clay |

| No. | m +  | Code | Observation                               |
|-----|------|------|-------------------------------------------|
| 1   | 0.00 | CP   | Start node, catchpit, reference: SW1      |
| 2   | 0.00 | WL   | Water level, 0% of the vertical dimension |
| 3   | 3.00 | MHF  | Finish node, manhole, reference: SW2      |

|                                       |                                 |
|---------------------------------------|---------------------------------|
| <b>PLR:</b> SW2X                      | <b>Upstream Node:</b> SW2       |
| <b>Inspection Direction:</b> Upstream | <b>Downstream Node:</b> SW3     |
| <b>Inspected Length:</b> 15.70 m      | <b>Dia/Height:</b> 225 mm       |
| <b>Total Length:</b> 15.70 m          | <b>Material:</b> Vitrified clay |

| No. | m +   | Code | Observation                                |
|-----|-------|------|--------------------------------------------|
| 1   | 0.00  | MH   | Start node, manhole, reference: SW3        |
| 2   | 0.00  | WL   | Water level, 20% of the vertical dimension |
| 3   | 7.00  | WL   | Water level, 25% of the vertical dimension |
| 4   | 10.30 | CUW  | Loss of vision, camera under water, start  |
| 5   | 15.70 | CUW  | Loss of vision, camera under water, finish |
| 6   | 15.70 | SA   | Survey abandoned                           |

|                                         |                                     |
|-----------------------------------------|-------------------------------------|
| <b>PLR:</b> SW3X                        | <b>Upstream Node:</b> SW3           |
| <b>Inspection Direction:</b> Downstream | <b>Downstream Node:</b> SW4         |
| <b>Inspected Length:</b> 0.70 m         | <b>Dia/Height:</b> 225 mm           |
| <b>Total Length:</b> 0.70 m             | <b>Material:</b> Polyvinyl chloride |

| No. | m +  | Code | Observation                                |
|-----|------|------|--------------------------------------------|
| 1   | 0.00 | MH   | Start node, manhole, reference: SW3        |
| 2   | 0.00 | WL   | Water level, 10% of the vertical dimension |

## Section Summary

| Project Name<br>Chalk Road   |             |      | Project Number                                                                                        | Project Date<br>25/07/2025 |
|------------------------------|-------------|------|-------------------------------------------------------------------------------------------------------|----------------------------|
| No.                          | m +         | Code | Observation                                                                                           |                            |
| 3                            | 0.70        | MHF  | Finish node, manhole, reference: SW4                                                                  |                            |
| <b>PLR:</b>                  | SW4X        |      | <b>Upstream Node:</b>                                                                                 | SW4                        |
| <b>Inspection Direction:</b> | Down stream |      | <b>Downstream Node:</b>                                                                               | SW5                        |
| <b>Inspected Length:</b>     | 23.50 m     |      | <b>Dia/Height:</b>                                                                                    | 225 mm                     |
| <b>Total Length:</b>         | 23.50 m     |      | <b>Material:</b>                                                                                      | Concrete                   |
| No.                          | m +         | Code | Observation                                                                                           |                            |
| 1                            | 0.00        | MH   | Start node, manhole, reference: SW4                                                                   |                            |
| 2                            | 0.00        | WL   | Water level, 0% of the vertical dimension                                                             |                            |
| 3                            | 1.70        | JD   | Joint displaced, 5mm displacement, 5% - 10% of diameter                                               |                            |
| 4                            | 15.10       | RFJ  | Roots, fine at joint                                                                                  |                            |
| 5                            | 16.30       | RFJ  | Roots, fine at joint                                                                                  |                            |
| 6                            | 17.90       | RMJ  | Roots, mass at joint, 10% cross-sectional area loss                                                   |                            |
| 7                            | 18.90       | RMJ  | Roots, mass at joint, 10% cross-sectional area loss                                                   |                            |
| 8                            | 19.30       | DES  | Settled deposits, fine, 10% cross-sectional area loss, start                                          |                            |
| 9                            | 19.90       | DES  | Settled deposits, fine, 10% cross-sectional area loss, finish                                         |                            |
| 10                           | 20.50       | RMJ  | Roots, mass at joint, 30% cross-sectional area loss                                                   |                            |
| 11                           | 21.60       | OBX  | Other obstacles, other object in invert from 3 o'clock to 9 o'clock, 30% cross-sectional area loss    |                            |
| 12                           | 21.80       | RMJ  | Roots, mass at joint, 10% cross-sectional area loss                                                   |                            |
| 13                           | 21.90       | WL   | Water level, 10% of the vertical dimension                                                            |                            |
| 14                           | 22.50       | RFJ  | Roots, fine at joint                                                                                  |                            |
| 15                           | 23.50       | RMJ  | Roots, mass at joint, 90% cross-sectional area loss                                                   |                            |
| 16                           | 23.50       | SA   | Survey abandoned                                                                                      |                            |
| <b>PLR:</b>                  | SW5X        |      | <b>Upstream Node:</b>                                                                                 | SW5                        |
| <b>Inspection Direction:</b> | Down stream |      | <b>Downstream Node:</b>                                                                               | A                          |
| <b>Inspected Length:</b>     | 0.30 m      |      | <b>Dia/Height:</b>                                                                                    | 450 mm                     |
| <b>Total Length:</b>         | 0.30 m      |      | <b>Material:</b>                                                                                      | Concrete                   |
| No.                          | m +         | Code | Observation                                                                                           |                            |
| 1                            | 0.00        | MH   | Start node, manhole, reference: SW5                                                                   |                            |
| 2                            | 0.00        | WL   | Water level, 0% of the vertical dimension                                                             |                            |
| 3                            | 0.30        | RM   | Roots, mass, 80% cross-sectional area loss                                                            |                            |
| 4                            | 0.30        | SA   | Survey abandoned                                                                                      |                            |
| <b>PLR:</b>                  | SW1AX       |      | <b>Upstream Node:</b>                                                                                 | SW1A                       |
| <b>Inspection Direction:</b> | Upstream    |      | <b>Downstream Node:</b>                                                                               | SW1                        |
| <b>Inspected Length:</b>     | 28.80 m     |      | <b>Dia/Height:</b>                                                                                    | 225 mm                     |
| <b>Total Length:</b>         | 28.80 m     |      | <b>Material:</b>                                                                                      | Concrete                   |
| No.                          | m +         | Code | Observation                                                                                           |                            |
| 1                            | 0.00        | CP   | Start node, catchpit, reference: SW1                                                                  |                            |
| 2                            | 0.00        | WL   | Water level, 0% of the vertical dimension                                                             |                            |
| 3                            | 0.50        | DEEJ | Attached deposits, encrustation at joint from 2 o'clock to 10 o'clock, 5% cross-sectional area loss   |                            |
| 4                            | 1.40        | DEEJ | Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 10% cross-sectional area loss |                            |
| 5                            | 2.40        | DEEJ | Attached deposits, encrustation at joint from 3 o'clock to 10 o'clock, 10% cross-sectional area loss  |                            |
| 6                            | 3.10        | DEEJ | Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 10% cross-sectional area loss |                            |

## Section Summary

| Project Name | Project Number | Project Date |
|--------------|----------------|--------------|
| Chalk Road   |                | 25/07/2025   |

| No. | m +   | Code | Observation                                                                                           |
|-----|-------|------|-------------------------------------------------------------------------------------------------------|
| 7   | 4.00  | DEEJ | Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 15% cross-sectional area loss |
| 8   | 4.80  | DEEJ | Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 10% cross-sectional area loss |
| 9   | 5.90  | DEEJ | Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 20% cross-sectional area loss |
| 10  | 6.70  | DEEJ | Attached deposits, encrustation at joint from 2 o'clock to 10 o'clock, 5% cross-sectional area loss   |
| 11  | 7.50  | DEEJ | Attached deposits, encrustation at joint from 2 o'clock to 6 o'clock, 10% cross-sectional area loss   |
| 12  | 12.80 | DEEJ | Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 5% cross-sectional area loss  |
| 13  | 13.60 | DEEJ | Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 10% cross-sectional area loss |
| 14  | 14.80 | DEEJ | Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 5% cross-sectional area loss  |
| 15  | 15.60 | DEEJ | Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 15% cross-sectional area loss |
| 16  | 16.50 | DEEJ | Attached deposits, encrustation at joint from 6 o'clock to 10 o'clock, 5% cross-sectional area loss   |
| 17  | 19.90 | DEEJ | Attached deposits, encrustation at joint from 6 o'clock to 10 o'clock, 5% cross-sectional area loss   |
| 18  | 23.20 | DEEJ | Attached deposits, encrustation at joint from 2 o'clock to 6 o'clock, 10% cross-sectional area loss   |
| 19  | 28.80 | MHF  | Finish node, manhole, reference: SW1A                                                                 |



## Completed section inspection

## WEB PROJECT

CLICK TO OPEN THIS SECTION

|                |                     |                          |                                |                                   |                                 |                    |             |
|----------------|---------------------|--------------------------|--------------------------------|-----------------------------------|---------------------------------|--------------------|-------------|
| Item No.<br>1  | Insp. No.<br>1      | Date<br>16/07/25         | Time<br>9:52                   | Client's Job Ref<br>Not Specified | Weather<br>No Rain Or Snow      | Pre Cleaned<br>Yes | PLR<br>SW1X |
| Operator<br>GG | Vehicle<br>MJ74 TOU | Camera<br>Pearpoint P333 | Preset Length<br>Not Specified | Legal Status<br>Highways Drainage | Alternative ID<br>Not Specified |                    |             |

|                         |                      |                              |            |                               |         |
|-------------------------|----------------------|------------------------------|------------|-------------------------------|---------|
| <b>Town or Village:</b> | Higham               | <b>Inspection Direction:</b> | Downstream | <b>Upstream Node:</b>         | SW1     |
| <b>Road:</b>            | Chalk Road           | <b>Inspected Length:</b>     | 3.00 m     | <b>Upstream Pipe Depth:</b>   | 1.130 m |
| <b>Location:</b>        | Fields, farmland etc | <b>Total Length:</b>         | 3.00 m     | <b>Downstream Node:</b>       | SW2     |
| <b>Surface Type:</b>    | Gravel               | <b>Joint Length:</b>         |            | <b>Downstream Pipe Depth:</b> |         |

|                            |                     |                         |                |
|----------------------------|---------------------|-------------------------|----------------|
| <b>Use:</b>                | Surface water       | <b>Pipe Shape:</b>      | Circular       |
| <b>Type of Pipe:</b>       | Gravity drain/sewer | <b>Dia/Height:</b>      | 225 mm         |
| <b>Flow Control:</b>       | No flow control     | <b>Material:</b>        | Vitrified clay |
| <b>Year Constructed:</b>   | Not Specified       | <b>Lining Type:</b>     | No Lining      |
| <b>Inspection Purpose:</b> | Routine inspection  | <b>Lining Material:</b> | No Lining      |

### Comments:

## Recommendations:

Scale: 1:50 Position [m] Code Observation MPEG Photo Grade

Depth: 1.13 m

SW1

0.00 CP Start node, catchpit, reference: SW1 00:00:00

0.00 WL Water level, 0% of the vertical dimension 00:00:03

3.00 MHF Finish node, manhole, reference: SW2: Buried 00:00:44

Depth: m

| STR No. Def | STR Peak | STR Mean | STR Total | STR Grade | SER No. Def | SER Peak | SER Mean | SER Total | SER Grade |
|-------------|----------|----------|-----------|-----------|-------------|----------|----------|-----------|-----------|
| 0           | 0.0      | 0.0      | 0.0       | 1.0       | 0           | 0.0      | 0.0      | 0.0       | 1.0       |

## Section Pictures - 16/07/2025 - SW1X

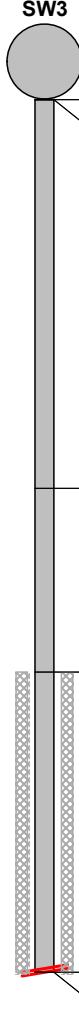
| Item No. | Inspection Direction | PLR  | Client's Job Ref | Contractor's Job Ref |
|----------|----------------------|------|------------------|----------------------|
| 1        | Dow nstream          | SW1X |                  |                      |



SW1X\_0855b435-6cff-4ebe-9a31-8e6177e215a8\_20250725  
\_125305\_287.jpg, 00:00:03, 0.00 m  
Water level, 0% of the vertical dimension



SW1X\_81faa2e2-a65e-488f-b42d-fb6c0e98a586\_20250725  
\_125400\_388.jpg, 00:00:44, 3.00 m  
Finish node, manhole, reference: SW2, Buried


## Abandoned section inspection

| Item No. | Insp. No.        | Date     | Time   | Client's Job Ref | Weather                        | Pre Cleaned                       | PLR                             |
|----------|------------------|----------|--------|------------------|--------------------------------|-----------------------------------|---------------------------------|
| 2        | 1                | 16/07/25 | 10:23  | Not Specified    | No Rain Or Snow                | Yes                               | SW2X                            |
| Operator | Vehicle MJ74 TOU |          | Camera | Pearpoint P333   | Preset Length<br>Not Specified | Legal Status<br>Highways Drainage | Alternative ID<br>Not Specified |

|                  |                      |                       |          |                        |         |
|------------------|----------------------|-----------------------|----------|------------------------|---------|
| Town or Village: | Higham               | Inspection Direction: | Upstream | Upstream Node:         | SW2     |
| Road:            | Chalk Road           | Inspected Length:     | 15.70 m  | Upstream Pipe Depth:   |         |
| Location:        | Fields, farmland etc | Total Length:         | 15.70 m  | Downstream Node:       | SW3     |
| Surface Type:    | Gravel               | Joint Length:         |          | Downstream Pipe Depth: | 1.240 m |

|                     |                     |                  |                |
|---------------------|---------------------|------------------|----------------|
| Use:                | Surface water       | Pipe Shape:      | Circular       |
| Type of Pipe:       | Gravity drain/sewer | Dia/Height:      | 225 mm         |
| Flow Control:       | No flow control     | Material:        | Vitrified clay |
| Year Constructed:   | Not Specified       | Lining Type:     | No Lining      |
| Inspection Purpose: | Routine inspection  | Lining Material: | No Lining      |

**Comments:**
**Recommendations:**

| Scale:                                                                             | Position [m] | Code | Observation                                                                    | MPEG     | Photo | Grade |
|------------------------------------------------------------------------------------|--------------|------|--------------------------------------------------------------------------------|----------|-------|-------|
| 1:136                                                                              |              |      |                                                                                |          |       |       |
| <b>Depth: 1.24 m</b>                                                               |              |      |                                                                                |          |       |       |
| <b>SW3</b>                                                                         |              |      |                                                                                |          |       |       |
|  |              |      |                                                                                |          |       |       |
| 0.00                                                                               |              | MH   | Start node, manhole, reference: SW3                                            | 00:00:00 |       |       |
| 0.00                                                                               |              | WL   | Water level, 20% of the vertical dimension                                     | 00:00:02 |       |       |
| 7.00                                                                               |              | WL   | Water level, 25% of the vertical dimension                                     | 00:01:30 |       |       |
| 10.30                                                                              | S02          | CUW  | Loss of vision, camera under water, start                                      | 00:02:19 |       |       |
| 15.70                                                                              | F02          | CUW  | Loss of vision, camera under water, finish                                     | 00:02:57 |       |       |
| 15.70                                                                              | SA           |      | Survey abandoned: Unable to proceed with crawler camera due to loss of vision. | 00:02:57 |       |       |

| STR No. | Def | STR Peak | STR Mean | STR Total | STR Grade | SER No. | Def | SER Peak | SER Mean | SER Total | SER Grade |
|---------|-----|----------|----------|-----------|-----------|---------|-----|----------|----------|-----------|-----------|
| 0       |     | 0.0      | 0.0      | 0.0       | 1.0       | 0       |     | 0.0      | 0.0      | 0.0       | 1.0       |

## Section Pictures - 16/07/2025 - SW2X

| Item No. | Inspection Direction | PLR  | Client's Job Ref | Contractor's Job Ref |
|----------|----------------------|------|------------------|----------------------|
| 2        | Upstream             | SW2X |                  |                      |



SW2X\_2dd868ed-2634-4f6c-b619-9d7eee09f9cd\_20250725  
\_125450\_740.jpg, 00:00:02, 0.00 m  
Water level, 20% of the vertical dimension



SW2X\_06134f88-0cfb-48ce-86b8-16c43289cae0\_20250725  
\_125627\_995.jpg, 00:01:30, 7.00 m  
Water level, 25% of the vertical dimension



SW2X\_ab64c2b8-7e04-4511-a04c-7b33e26424b5\_2025072  
5\_125805\_885.jpg, 00:02:19, 10.30 m  
Loss of vision, camera under water, start



SW2X\_c881d720-2966-4b77-a816-d1c63ea308b2\_2025072  
5\_125944\_450.jpg, 00:02:57, 15.70 m  
Survey abandoned, Unable to proceed with crawler camera

**Completed section inspection**

|                |                     |                          |               |                                   |                                   |                                 |             |
|----------------|---------------------|--------------------------|---------------|-----------------------------------|-----------------------------------|---------------------------------|-------------|
| Item No.<br>3  | Insp. No.<br>1      | Date<br>16/07/25         | Time<br>10:43 | Client's Job Ref<br>Not Specified | Weather<br>No Rain Or Snow        | Pre Cleaned<br>Yes              | PLR<br>SW3X |
| Operator<br>GG | Vehicle<br>MJ74 TOU | Camera<br>Pearpoint P333 |               | Preset Length<br>Not Specified    | Legal Status<br>Highways Drainage | Alternative ID<br>Not Specified |             |

|                                   |                                     |                                   |
|-----------------------------------|-------------------------------------|-----------------------------------|
| Town or Village:<br>Higham        | Inspection Direction:<br>Downstream | Upstream Node:<br>SW3             |
| Road:<br>Chalk Road               | Inspected Length:<br>0.70 m         | Upstream Pipe Depth:<br>1.240 m   |
| Location:<br>Fields, farmland etc | Total Length:<br>0.70 m             | Downstream Node:<br>SW4           |
| Surface Type:<br>Gravel           | Joint Length:                       | Downstream Pipe Depth:<br>1.250 m |

|                                           |                                 |
|-------------------------------------------|---------------------------------|
| Use:<br>Surface water                     | Pipe Shape:<br>Circular         |
| Type of Pipe:<br>Gravity drain/sewer      | Dia/Height:<br>225 mm           |
| Flow Control:<br>No flow control          | Material:<br>Polyvinyl chloride |
| Year Constructed:<br>Not Specified        | Lining Type:<br>No Lining       |
| Inspection Purpose:<br>Routine inspection | Lining Material:<br>No Lining   |

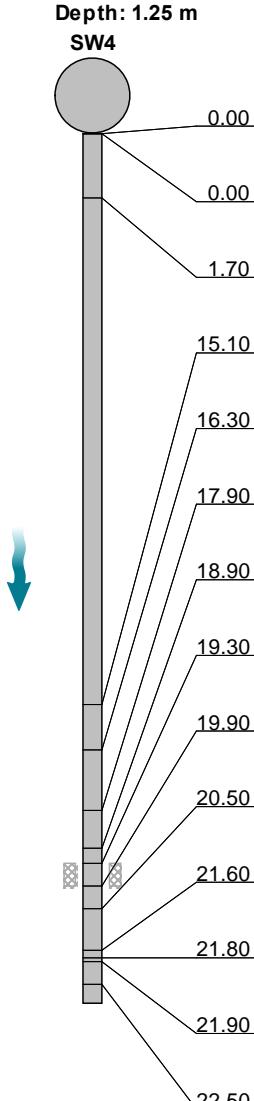
**Comments:**
**Recommendations:**

| Scale: 1:50   | Position [m]  | Code | Observation                                | MPEG     | Photo | Grade |
|---------------|---------------|------|--------------------------------------------|----------|-------|-------|
| Depth: 1.24 m |               |      |                                            |          |       |       |
| SW3           | 0.00          | MH   | Start node, manhole, reference: SW3        | 00:00:00 |       |       |
|               | 0.00          | WL   | Water level, 10% of the vertical dimension | 00:00:02 |       |       |
|               | 0.70          | MHF  | Finish node, manhole, reference: SW4       | 00:00:38 |       |       |
| SW4           | Depth: 1.25 m |      |                                            |          |       |       |

| STR No. | Def | STR Peak | STR Mean | STR Total | STR Grade | SER No. | Def | SER Peak | SER Mean | SER Total | SER Grade |
|---------|-----|----------|----------|-----------|-----------|---------|-----|----------|----------|-----------|-----------|
| 0       |     | 0.0      | 0.0      | 0.0       | 1.0       | 0       |     | 0.0      | 0.0      | 0.0       | 1.0       |

## Section Pictures - 16/07/2025 - SW3X

| Item No. | Inspection Direction | PLR  | Client's Job Ref | Contractor's Job Ref |
|----------|----------------------|------|------------------|----------------------|
| 3        | Dow nstream          | SW3X |                  |                      |




SW3X\_bf7640f8-40f4-46dc-b646-70954f421e66\_20250725  
 \_130109\_255.jpg, 00:00:02, 0.00 m  
 Water level, 10% of the vertical dimension



SW3X\_10ca92eb-3f92-4d79-bb41-39ab0d5f036b\_20250725  
 \_130157\_576.jpg, 00:00:38, 0.70 m  
 Finish node, manhole, reference: SW4

## Abandoned section inspection

| Item No.<br>4                                                                                              | Insp. No.<br>1                             | Date<br>16/07/25                         | Time<br>14:42                                                                                              | Client's Job Ref<br>Not Specified | Weather<br>No Rain Or Snow        | Pre Cleaned<br>Yes              | PLR<br>SW4X |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|---------------------------------|-------------|
| Operator<br>GG                                                                                             | Vehicle<br>MJ74 TOU                        | Camera<br>Pearpoint P333                 |                                                                                                            | Preset Length<br>Not Specified    | Legal Status<br>Highways Drainage | Alternative ID<br>Not Specified |             |
| <b>Town or Village:</b><br>Higham                                                                          | <b>Inspection Direction:</b><br>Downstream | <b>Upstream Node:</b><br>SW4             |                                                                                                            |                                   |                                   |                                 |             |
| <b>Road:</b><br>Chalk Road                                                                                 | <b>Inspected Length:</b><br>23.50 m        | <b>Upstream Pipe Depth:</b><br>1.250 m   |                                                                                                            |                                   |                                   |                                 |             |
| <b>Location:</b><br>Fields, farmland etc                                                                   | <b>Total Length:</b><br>23.50 m            | <b>Downstream Node:</b><br>SW5           |                                                                                                            |                                   |                                   |                                 |             |
| <b>Surface Type:</b><br>Gravel                                                                             | <b>Joint Length:</b>                       | <b>Downstream Pipe Depth:</b><br>1.250 m |                                                                                                            |                                   |                                   |                                 |             |
| <b>Use:</b><br>Surface water                                                                               | <b>Pipe Shape:</b><br>Circular             |                                          |                                                                                                            |                                   |                                   |                                 |             |
| <b>Type of Pipe:</b><br>Gravity drain/sewer                                                                | <b>Dia/Height:</b><br>225 mm               |                                          |                                                                                                            |                                   |                                   |                                 |             |
| <b>Flow Control:</b><br>No flow control                                                                    | <b>Material:</b><br>Concrete               |                                          |                                                                                                            |                                   |                                   |                                 |             |
| <b>Year Constructed:</b><br>Not Specified                                                                  | <b>Lining Type:</b><br>No Lining           |                                          |                                                                                                            |                                   |                                   |                                 |             |
| <b>Inspection Purpose:</b><br>Routine inspection                                                           | <b>Lining Material:</b><br>No Lining       |                                          |                                                                                                            |                                   |                                   |                                 |             |
| <b>Comments:</b>                                                                                           |                                            |                                          |                                                                                                            |                                   |                                   |                                 |             |
| <b>Recommendations:</b>                                                                                    |                                            |                                          |                                                                                                            |                                   |                                   |                                 |             |
| Scale: 1:200                                                                                               | Position [m]                               | Code                                     | Observation                                                                                                | MPEG                              | Photo                             | Grade                           |             |
| <b>Depth: 1.25 m</b><br> |                                            |                                          |                                                                                                            |                                   |                                   |                                 |             |
|                                                                                                            | 0.00                                       | MH                                       | Start node, manhole, reference: SW4                                                                        | 00:00:00                          |                                   |                                 |             |
|                                                                                                            | 0.00                                       | WL                                       | Water level, 0% of the vertical dimension                                                                  | 00:00:00                          |                                   |                                 |             |
|                                                                                                            | 1.70                                       | JD                                       | Joint displaced, 5mm displacement, 5% - 10% of diameter                                                    | 00:00:19                          |                                   | 3 / 3                           |             |
|                                                                                                            | 15.10                                      | RFJ                                      | Roots, fine at joint                                                                                       | 00:02:30                          |                                   | 2                               |             |
|                                                                                                            | 16.30                                      | RFJ                                      | Roots, fine at joint                                                                                       | 00:02:44                          |                                   | 2                               |             |
|                                                                                                            | 17.90                                      | RMJ                                      | Roots, mass at joint, 10% cross-sectional area loss                                                        | 00:02:58                          |                                   | 3                               |             |
|                                                                                                            | 18.90                                      | RMJ                                      | Roots, mass at joint, 10% cross-sectional area loss                                                        | 00:03:08                          |                                   | 3                               |             |
|                                                                                                            | 19.30                                      | S01                                      | Settled deposits, fine, 10% cross-sectional area loss, start                                               | 00:03:16                          |                                   |                                 |             |
|                                                                                                            | 19.90                                      | F01                                      | Settled deposits, fine, 10% cross-sectional area loss, finish                                              | 00:04:44                          |                                   | 3                               |             |
|                                                                                                            | 20.50                                      | RMJ                                      | Roots, mass at joint, 30% cross-sectional area loss                                                        | 00:04:47                          |                                   | 5                               |             |
|                                                                                                            | 21.60                                      | OBX                                      | Other obstacles, other object in invert from 3 o'clock to 9 o'clock, 30% cross-sectional area loss: Bottle | 00:05:03                          |                                   | 5                               |             |
|                                                                                                            | 21.80                                      | RMJ                                      | Roots, mass at joint, 10% cross-sectional area loss                                                        | 00:05:12                          |                                   | 3                               |             |
|                                                                                                            | 21.90                                      | WL                                       | Water level, 10% of the vertical dimension                                                                 | 00:05:14                          |                                   |                                 |             |
|                                                                                                            | 22.50                                      | RFJ                                      | Roots, fine at joint                                                                                       | 00:05:23                          |                                   | 2                               |             |

## Abandoned section inspection

| Item No. | Insp. No. | Date     | Time           | Client's Job Ref | Weather         | Pre Cleaned       | PLR            |
|----------|-----------|----------|----------------|------------------|-----------------|-------------------|----------------|
| 4        | 1         | 16/07/25 | 14:42          | Not Specified    | No Rain Or Snow | Yes               | SW4X           |
| Operator | Vehicle   |          | Camera         |                  | Preset Length   | Legal Status      | Alternative ID |
| GG       | MJ74 TOU  |          | Pearpoint P333 |                  | Not Specified   | Highways Drainage | Not Specified  |

|        |       |              |      |                                                      |          |       |       |
|--------|-------|--------------|------|------------------------------------------------------|----------|-------|-------|
| Scale: | 1:200 | Position [m] | Code | Observation                                          | MPEG     | Photo | Grade |
|        |       | 23.50        | RMJ  | Roots, mass at joint, 90% cross-sectional area loss  | 00:05:39 |       | 5     |
|        |       | 23.50        | SA   | Survey abandoned: Unable to remove roots to proceed. | 00:05:53 |       |       |

| STR No. | Def | STR Peak | STR Mean | STR Total | STR Grade | SER No. | Def | SER Peak | SER Mean | SER Total | SER Grade |
|---------|-----|----------|----------|-----------|-----------|---------|-----|----------|----------|-----------|-----------|
| 1       |     | 40.0     | 1.7      | 40.0      | 3.0       | 11      |     | 20.0     | 2.6      | 61.0      | 5.0       |

## Section Pictures - 16/07/2025 - SW4X

| Item No. | Inspection Direction | PLR  | Client's Job Ref | Contractor's Job Ref |
|----------|----------------------|------|------------------|----------------------|
| 4        | Dow nstream          | SW4X |                  |                      |



SW4X\_ce955ff4-5be9-4f94-b302-402b60b879a6\_20250725  
\_130507\_233.jpg, 00:00:00, 0.00 m

Water level, 0% of the vertical dimension



SW4X\_f4d62431-5ee5-4893-a2da-e91bbe1cf3e2\_20250725  
\_130905\_383.jpg, 00:02:30, 15.10 m

Roots, fine at joint



SW4X\_a2754265-661c-482a-b8d5-c56cbf39fe06\_20250725  
\_130955\_263.jpg, 00:02:58, 17.90 m

Roots, mass at joint, 10% cross-sectional area loss



SW4X\_ca6f9206-c86e-412f-9611-c3b1676462bd\_20250725  
\_130535\_541.jpg, 00:00:19, 1.70 m

Joint displaced, 5mm displacement, 5% - 10% of diameter



SW4X\_ac5a04dc-91ee-4295-8dcd-cb64130294d6\_20250725  
\_130929\_214.jpg, 00:02:44, 16.30 m

Roots, fine at joint



SW4X\_c9914e6f-c70a-4ee6-8c6b-75634d33c5db\_20250725  
\_131014\_251.jpg, 00:03:08, 18.90 m

Roots, mass at joint, 10% cross-sectional area loss

## Section Pictures - 16/07/2025 - SW4X

| Item No. | Inspection Direction | PLR  | Client's Job Ref | Contractor's Job Ref |
|----------|----------------------|------|------------------|----------------------|
| 4        | Dow nstream          | SW4X |                  |                      |



SW4X\_912faf42-13a5-4abb-a7af-21d6e609b3e6\_20250725  
\_131340\_865.jpg, 00:04:44, 19.90 m

Settled deposits, fine, 10% cross-sectional area loss, finish



SW4X\_4a979614-84cf-42ff-b27d-023b8439d9a4\_20250725  
\_131526\_597.jpg, 00:05:03, 21.60 m

Other obstacles, other object in invert from 3 o'clock to 9



SW4X\_50947d19-cdbb-40ef-94bf-9614e49c9dab\_20250725  
\_131649\_311.jpg, 00:05:39, 23.50 m

Roots, mass at joint, 90% cross-sectional area loss



SW4X\_9c8f3424-4aff-4de4-9b91-76d5d866e796\_20250725  
\_131414\_802.jpg, 00:04:47, 20.50 m

Roots, mass at joint, 30% cross-sectional area loss



SW4X\_c4eb77fc-b768-4756-b29b-c941eae37023\_20250725  
\_131606\_852.jpg, 00:05:14, 21.90 m

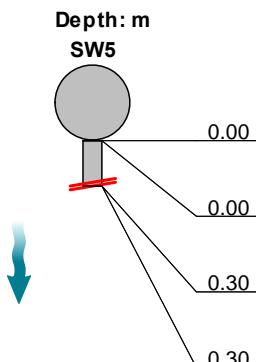
Water level, 10% of the vertical dimension



SW4X\_4b542ec1-e649-4268-be88-48eda2aea131\_20250725  
\_131723\_581.jpg, 00:05:53, 23.50 m

Survey abandoned, Unable to remove roots to proceed.

## Abandoned section inspection


|                |                     |                          |               |                                   |                                   |                                 |             |
|----------------|---------------------|--------------------------|---------------|-----------------------------------|-----------------------------------|---------------------------------|-------------|
| Item No.<br>5  | Insp. No.<br>1      | Date<br>25/07/25         | Time<br>13:17 | Client's Job Ref<br>Not Specified | Weather<br>No Rain Or Snow        | Pre Cleaned<br>Yes              | PLR<br>SW5X |
| Operator<br>GG | Vehicle<br>MJ74 TOU | Camera<br>Pearpoint P333 |               | Preset Length<br>Not Specified    | Legal Status<br>Highways Drainage | Alternative ID<br>Not Specified |             |

|                                   |                                     |                        |
|-----------------------------------|-------------------------------------|------------------------|
| Town or Village:<br>Higham        | Inspection Direction:<br>Downstream | Upstream Node:<br>SW5  |
| Road:<br>Chalk Road               | Inspected Length:<br>0.30 m         | Upstream Pipe Depth:   |
| Location:<br>Fields, farmland etc | Total Length:<br>0.30 m             | Downstream Node:<br>A  |
| Surface Type:<br>Overgrown        | Joint Length:                       | Downstream Pipe Depth: |

|                                           |                               |
|-------------------------------------------|-------------------------------|
| Use:<br>Surface water                     | Pipe Shape:<br>Circular       |
| Type of Pipe:<br>Gravity drain/sewer      | Dia/Height:<br>450 mm         |
| Flow Control:<br>No flow control          | Material:<br>Concrete         |
| Year Constructed:<br>Not Specified        | Lining Type:<br>No Lining     |
| Inspection Purpose:<br>Routine inspection | Lining Material:<br>No Lining |

**Comments:**
**Recommendations:**

| Scale: 1:50 | Position [m] | Code | Observation                                         | MPEG | Photo | Grade |
|-------------|--------------|------|-----------------------------------------------------|------|-------|-------|
| Depth: m    |              |      |                                                     |      |       |       |
| SW5         | 0.00         | MH   | Start node, manhole, reference: SW5                 |      |       |       |
|             | 0.00         | WL   | Water level, 0% of the vertical dimension           |      |       |       |
|             | 0.30         | RM   | Roots, mass, 80% cross-sectional area loss          | 5    |       |       |
|             | 0.30         | SA   | Survey abandoned: Unable to remove roots to survey. |      |       |       |



| STR No. | Def | STR Peak | STR Mean | STR Total | STR Grade | SER No. | Def | SER Peak | SER Mean | SER Total | SER Grade |
|---------|-----|----------|----------|-----------|-----------|---------|-----|----------|----------|-----------|-----------|
| 0       |     | 0.0      | 0.0      | 0.0       | 1.0       | 1       |     | 20.0     | 66.7     | 20.0      | 5.0       |

## Section Pictures - 25/07/2025 - SW5X

| Item No. | Inspection Direction | PLR  | Client's Job Ref | Contractor's Job Ref |
|----------|----------------------|------|------------------|----------------------|
| 5        | Dow nstream          | SW5X |                  |                      |



SW5X\_c50b7dfd-15bc-46f2-bff4-4b311e3f055a\_20250725\_132425.jpg, 0.30 m

Roots, mass, 80% cross-sectional area loss

## Completed section inspection

| Item No. | Insp. No. | Date     | Time  | Client's Job Ref | Weather         | Pre Cleaned | PLR   |
|----------|-----------|----------|-------|------------------|-----------------|-------------|-------|
| 6        | 1         | 16/07/25 | 15:12 | Not Specified    | No Rain Or Snow | Yes         | SW1AX |

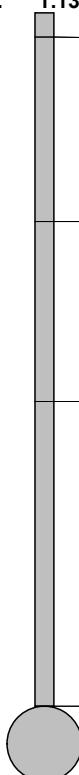
| Operator | Vehicle  | Camera         | Preset Length | Legal Status      | Alternative ID |
|----------|----------|----------------|---------------|-------------------|----------------|
| GG       | MJ74 TOU | Pearpoint P333 | Not Specified | Highways Drainage | Not Specified  |

|                         |                      |                              |          |                               |         |
|-------------------------|----------------------|------------------------------|----------|-------------------------------|---------|
| <b>Town or Village:</b> | Higham               | <b>Inspection Direction:</b> | Upstream | <b>Upstream Node:</b>         | SW1A    |
| <b>Road:</b>            | Chalk Road           | <b>Inspected Length:</b>     | 28.80 m  | <b>Upstream Pipe Depth:</b>   |         |
| <b>Location:</b>        | Fields, farmland etc | <b>Total Length:</b>         | 28.80 m  | <b>Downstream Node:</b>       | SW1     |
| <b>Surface Type:</b>    | Gravel               | <b>Joint Length:</b>         |          | <b>Downstream Pipe Depth:</b> | 1.130 m |

|                            |                     |                         |           |
|----------------------------|---------------------|-------------------------|-----------|
| <b>Use:</b>                | Surface water       | <b>Pipe Shape:</b>      | Circular  |
| <b>Type of Pipe:</b>       | Gravity drain/sewer | <b>Dia/Height:</b>      | 225 mm    |
| <b>Flow Control:</b>       | No flow control     | <b>Material:</b>        | Concrete  |
| <b>Year Constructed:</b>   | Not Specified       | <b>Lining Type:</b>     | No Lining |
| <b>Inspection Purpose:</b> | Routine inspection  | <b>Lining Material:</b> | No Lining |

**Comments:**
**Recommendations:**

| Scale: 1:139  | Position [m] | Code | Observation                                                                                           | MPEG     | Photo | Grade |
|---------------|--------------|------|-------------------------------------------------------------------------------------------------------|----------|-------|-------|
| Depth: 1.13 m |              |      |                                                                                                       |          |       |       |
| SW1           | 0.00         | CP   | Start node, catchpit, reference: SW1                                                                  | 00:00:00 |       |       |
|               | 0.00         | WL   | Water level, 0% of the vertical dimension                                                             | 00:00:00 |       |       |
|               | 0.50         | DEEJ | Attached deposits, encrustation at joint from 2 o'clock to 10 o'clock, 5% cross-sectional area loss   | 00:00:09 |       | 3     |
|               | 1.40         | DEEJ | Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 10% cross-sectional area loss | 00:00:19 |       | 3     |
|               | 2.40         | DEEJ | Attached deposits, encrustation at joint from 3 o'clock to 10 o'clock, 10% cross-sectional area loss  | 00:00:31 |       | 3     |
|               | 3.10         | DEEJ | Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 10% cross-sectional area loss | 00:00:44 |       | 3     |
|               | 4.00         | DEEJ | Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 15% cross-sectional area loss | 00:00:54 |       | 3     |
|               | 4.80         | DEEJ | Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 10% cross-sectional area loss | 00:01:09 |       | 3     |
|               | 5.90         | DEEJ | Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 20% cross-sectional area loss | 00:01:25 |       | 3     |
|               | 6.70         | DEEJ | Attached deposits, encrustation at joint from 2 o'clock to 10 o'clock, 5% cross-sectional area loss   | 00:01:37 |       | 3     |
|               | 7.50         | DEEJ | Attached deposits, encrustation at joint from 2 o'clock to 6 o'clock, 10% cross-sectional area loss   | 00:01:45 |       | 3     |
|               | 12.80        | DEEJ | Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 5% cross-sectional area loss  | 00:02:33 |       | 3     |
|               | 13.60        | DEEJ | Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 10% cross-sectional area loss | 00:02:46 |       | 3     |
|               | 14.80        | DEEJ | Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 5% cross-sectional area loss  | 00:03:04 |       | 3     |
|               | 15.60        | DEEJ | Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 15% cross-sectional area loss | 00:03:20 |       | 3     |


## Completed section inspection


**WEB PROJECT**  
 CLICK TO OPEN THIS SECTION

| Item No.       | Insp. No. | Date                | Time  | Client's Job Ref         | Weather                        | Pre Cleaned                       | PLR                             |
|----------------|-----------|---------------------|-------|--------------------------|--------------------------------|-----------------------------------|---------------------------------|
| 6              | 1         | 16/07/25            | 15:12 | Not Specified            | No Rain Or Snow                | Yes                               | SW1AX                           |
| Operator<br>GG |           | Vehicle<br>MJ74 TOU |       | Camera<br>Pearpoint P333 | Preset Length<br>Not Specified | Legal Status<br>Highways Drainage | Alternative ID<br>Not Specified |

| Scale: | 1:139 | Position [m] | Code | Observation                                                                                         | MPEG     | Photo | Grade |
|--------|-------|--------------|------|-----------------------------------------------------------------------------------------------------|----------|-------|-------|
|        |       | 16.50        | DEEJ | Attached deposits, encrustation at joint from 6 o'clock to 10 o'clock, 5% cross-sectional area loss | 00:03:32 |       | 3     |
|        |       | 19.90        | DEEJ | Attached deposits, encrustation at joint from 6 o'clock to 10 o'clock, 5% cross-sectional area loss | 00:04:08 |       | 3     |
|        |       | 23.20        | DEEJ | Attached deposits, encrustation at joint from 2 o'clock to 6 o'clock, 10% cross-sectional area loss | 00:04:40 |       | 3     |
|        |       | 28.80        | MHF  | Finish node, manhole, reference: SW1A: No access.                                                   | 00:05:52 |       |       |

SW1A  
Depth: m



| STR No. | Def | STR Peak | STR Mean | STR Total | STR Grade | SER No. | Def | SER Peak | SER Mean | SER Total | SER Grade |
|---------|-----|----------|----------|-----------|-----------|---------|-----|----------|----------|-----------|-----------|
| 0       |     | 0.0      | 0.0      | 0.0       | 1.0       | 16      |     | 2.0      | 1.1      | 32.0      | 3.0       |

## Section Pictures - 16/07/2025 - SW1AX

| Item No. | Inspection Direction | PLR   | Client's Job Ref | Contractor's Job Ref |
|----------|----------------------|-------|------------------|----------------------|
| 6        | Upstream             | SW1AX |                  |                      |



SW1AX\_0cf915f7-7ec4-4db5-a4cc-a4781e8b27d2\_202507  
25\_132642\_560.jpg, 00:00:00, 0.00 m  
Water level, 0% of the vertical dimension



SW1AX\_9eb4e2d5-8a46-406b-bfb7-429fa7d84ddd\_202507  
25\_132735\_570.jpg, 00:00:09, 0.50 m  
Attached deposits, encrustation at joint from 2 o'clock to 10



SW1AX\_f4cfc597-a243-4a1d-af56-ecb7cdf0f259\_2025072  
5\_132758\_269.jpg, 00:00:19, 1.40 m  
Attached deposits, encrustation at joint from 12 o'clock to 12



SW1AX\_fdb3f9d8-27bb-48f3-9dce-ada41a5fc1a5\_2025072  
5\_132823\_531.jpg, 00:00:31, 2.40 m  
Attached deposits, encrustation at joint from 3 o'clock to 10



SW1AX\_c73c694e-add2-4a94-8c46-028ac5980726\_202507  
25\_132846\_514.jpg, 00:00:44, 3.10 m  
Attached deposits, encrustation at joint from 12 o'clock to 12



SW1AX\_9fc44344-6ee2-4eb1-99c6-bb8b1bb80b1f\_202507  
25\_132908\_245.jpg, 00:00:54, 4.00 m  
Attached deposits, encrustation at joint from 12 o'clock to 12

## Section Pictures - 16/07/2025 - SW1AX

| Item No. | Inspection Direction | PLR   | Client's Job Ref | Contractor's Job Ref |
|----------|----------------------|-------|------------------|----------------------|
| 6        | Upstream             | SW1AX |                  |                      |



SW1AX\_de1c2ee6-7125-4cf8-95b5-97974f47360f\_20250725\_132932\_230.jpg, 00:01:09, 4.80 m

Attached deposits, encrustation at joint from 12 o'clock to 12



SW1AX\_12a60236-8313-442c-bda0-f23d4ee2e27d\_20250725\_133030\_977.jpg, 00:01:37, 6.70 m

Attached deposits, encrustation at joint from 2 o'clock to 10



SW1AX\_875143cf-d41d-4b0d-8ebf-4691ed5f60f8\_20250725\_133155\_368.jpg, 00:02:33, 12.80 m

Attached deposits, encrustation at joint from 12 o'clock to 12



SW1AX\_81adb980-3daa-4b09-8e9e-78d2143d5e0a\_20250725\_132956\_855.jpg, 00:01:25, 5.90 m

Attached deposits, encrustation at joint from 12 o'clock to 12



SW1AX\_06463711-dad9-4da7-819f-180eb47705db\_20250725\_133050\_737.jpg, 00:01:45, 7.50 m

Attached deposits, encrustation at joint from 2 o'clock to 6



SW1AX\_78ef7943-7ea3-4577-b7c6-e02583b00763\_20250725\_133216\_802.jpg, 00:02:46, 13.60 m

Attached deposits, encrustation at joint from 12 o'clock to 12

## Section Pictures - 16/07/2025 - SW1AX

| Item No. | Inspection Direction | PLR   | Client's Job Ref | Contractor's Job Ref |
|----------|----------------------|-------|------------------|----------------------|
| 6        | Upstream             | SW1AX |                  |                      |



SW1AX\_1d74f1d9-a415-452a-823f-047ce9fc0c24\_2025072  
5\_133244\_424.jpg, 00:03:04, 14.80 m

Attached deposits, encrustation at joint from 12 o'clock to 12



SW1AX\_077864cf-e47f-44fb-addc-cfddb2ea511b\_2025072  
5\_133310\_966.jpg, 00:03:20, 15.60 m

Attached deposits, encrustation at joint from 12 o'clock to 12



SW1AX\_e8e15e58-7ff4-45b7-a7f5-8028a4b795cb\_2025072  
5\_133338\_576.jpg, 00:03:32, 16.50 m

Attached deposits, encrustation at joint from 6 o'clock to 10



SW1AX\_42ec5fb4-e355-4b6f-88dd-4f2bc68befc7\_2025072  
5\_133419\_801.jpg, 00:04:08, 19.90 m

Attached deposits, encrustation at joint from 6 o'clock to 10



SW1AX\_cb0eb336-4a0e-4983-81be-5d2653769a74\_202507  
25\_133503\_567.jpg, 00:04:40, 23.20 m

Attached deposits, encrustation at joint from 2 o'clock to 6



SW1AX\_a5cb16d0-7298-49c1-87a4-4cccd9ae49394\_202507  
25\_133710\_745.jpg, 00:05:52, 28.80 m

Finish node, manhole, reference: SW1A, No access.

## Disclaimer

Although every effort has been made to produce a thorough and precise report, Aquatech Drain Services Ltd cannot be held liable for any discrepancies or omissions. Furthermore Aquatech Drain Services Ltd cannot be held responsible for any actions taken based on the information supplied within this report.



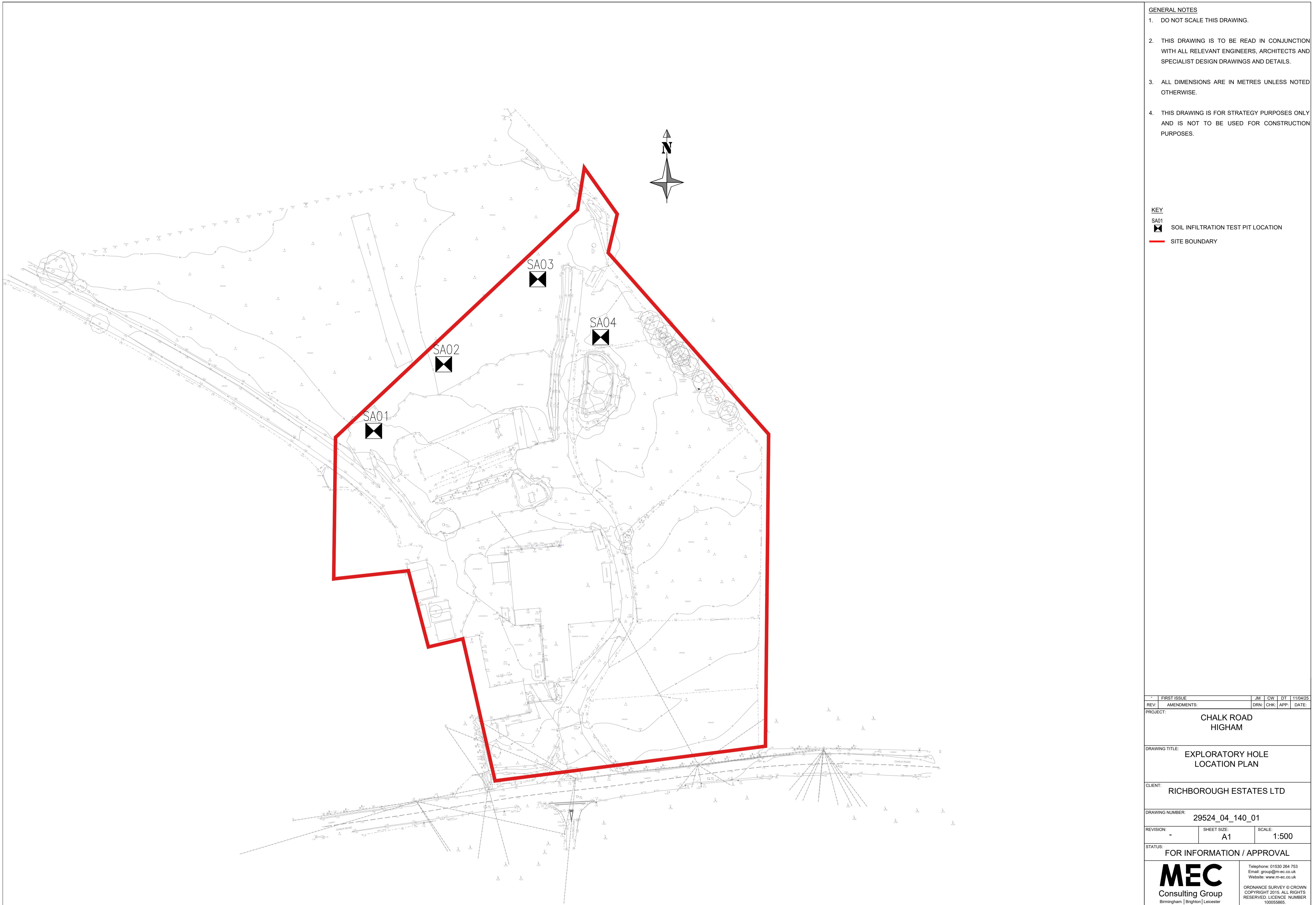
**MEC**  
Consulting Group

# APPENDICES



## APPENDIX G




|                  |                 |
|------------------|-----------------|
| <b>Doc. Ref.</b> | 29524-CALC-0401 |
| <b>Sheet</b>     | 1 of 10         |
| <b>Engineer</b>  | AL              |
| <b>Date</b>      | 16.04.25        |
| <b>Revision</b>  | -               |

## SOIL INFILTRATION CALCULATIONS FRONT SHEET

|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>SCHEME</b>                                                           | Chalk Road, Higham                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>CLIENT</b>                                                           | Richborough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>ASPECTS OF SCHEME TO BE DESIGNED</b>                                 | Soil Infiltration Rate Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>CODES OF PRACTICE, DESIGN SPECIFICATIONS &amp; BRITISH STANDARDS</b> | Soil Infiltration Rate testing and calculations completed in general accordance with BRE Digest 365 utilising the gravel fill pit method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>NOTES</b>                                                            | <p>The soil infiltration rate test results reported below applies to the specific test depth range as stated on the calculation sheet. Testing was undertaken in four locations (SA01-SA04) and within the Thanet Formation. The locations of the soil infiltration test pits are shown on the exploratory hole location plan.</p> <p>Insufficient soakage was recorded within the four soakaway locations tested to enable the calculation of a representative infiltration rate in accordance with BRE 365. Seepages of groundwater were also recorded in SA03 at 1.80m bgl and SA04 at 2.00m bgl.</p> <p>Based on the results and the presence of shallow groundwater, it is considered that a soakaway drainage system will not provide a consistent and viable drainage option at the locations tested.</p> |

## INDEX

| <b>Sheets</b> | <b>Calculations</b>            |                                                               | <b>Checked by</b> | <b>Approved By</b> | <b>Date</b> |
|---------------|--------------------------------|---------------------------------------------------------------|-------------------|--------------------|-------------|
| 2             | Exploratory Hole Location Plan |                                                               | JM                | DT                 | 23.04.25    |
| 3-6           | SA01 – Test 1                  | Result = Insufficient soakage to derive an infiltration rate. |                   |                    |             |
|               | SA02 – Test 1                  | Result = Insufficient soakage to derive an infiltration rate. |                   |                    |             |
|               | SA03 – Test 1                  | Result = Insufficient soakage to derive an infiltration rate. |                   |                    |             |
|               | SA04 – Test 1                  | Result = Insufficient soakage to derive an infiltration rate. |                   |                    |             |
| 7-10          | Exploratory Hole Logs          |                                                               |                   |                    |             |





**Scheme** Chalk Road, Higham  
**Client** Richborough  
**Job ref.** 29524

**Page No.** 3  
**Calcs by** AL  
**Checked By** DT  
**Date** 16/04/24

## Soil Infiltration Test - Gravel Filled Method

(In general accordance with BRE Digest 365, 2016, Soakaway Design)


| Soakaway pit ref.  | SA01                                                                                                                                                                                                                                                                       | Test 1 |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Length             | 1.70 m                                                                                                                                                                                                                                                                     |        |
| Width              | 0.45 m                                                                                                                                                                                                                                                                     |        |
| Depth              | 2.10 m                                                                                                                                                                                                                                                                     |        |
| Ground water level | N/A m                                                                                                                                                                                                                                                                      |        |
| Ground conditions  | 0.00-0.30m MADE GROUND: Grass over dark brown sandy, silty clay topsoil with occasional gravel sized fragments of quartzite, chert and brick, and rare cobble sized fragments of brick.<br><br>0.30-2.10m Brown becoming orangish brown, silty CLAY.<br>(THANET FORMATION) |        |

| Time (mins) | Depth to water (m bgl) |
|-------------|------------------------|
| 0           | 0.57                   |
| 1           | 0.60                   |
| 2           | 0.60                   |
| 3           | 0.62                   |
| 5           | 0.63                   |
| 10          | 0.68                   |
| 45          | 0.88                   |
| 95          | 1.01                   |
| 185         | 1.08                   |
| 371         | 1.12                   |
| 401         | 1.12                   |
| 1324        | 1.14                   |
| 1439        | 1.14                   |

Effective storage depth = 1.53 m  
 75% effective storage depth = 1.15 m  
 (ie depth below GL) = 0.95 m  
 25% effective storage depth = 0.38 m  
 (ie depth below GL) = 1.72 m  
 effective storage depth 75%-25% = 0.77 m

Time to fall to 75% effective depth = 70 mins  
 Time to fall to 25% effective depth = N/A mins  
 Void Ratio = 40%  
 $V (75\%-25\%) = 0.23 \text{ m}^3$   
 $a (50\%) = 4.05 \text{ m}^2$   
 $t (75\%-25\%) = \text{N/A mins}$

**Insufficient soakage to derive an infiltration rate.**



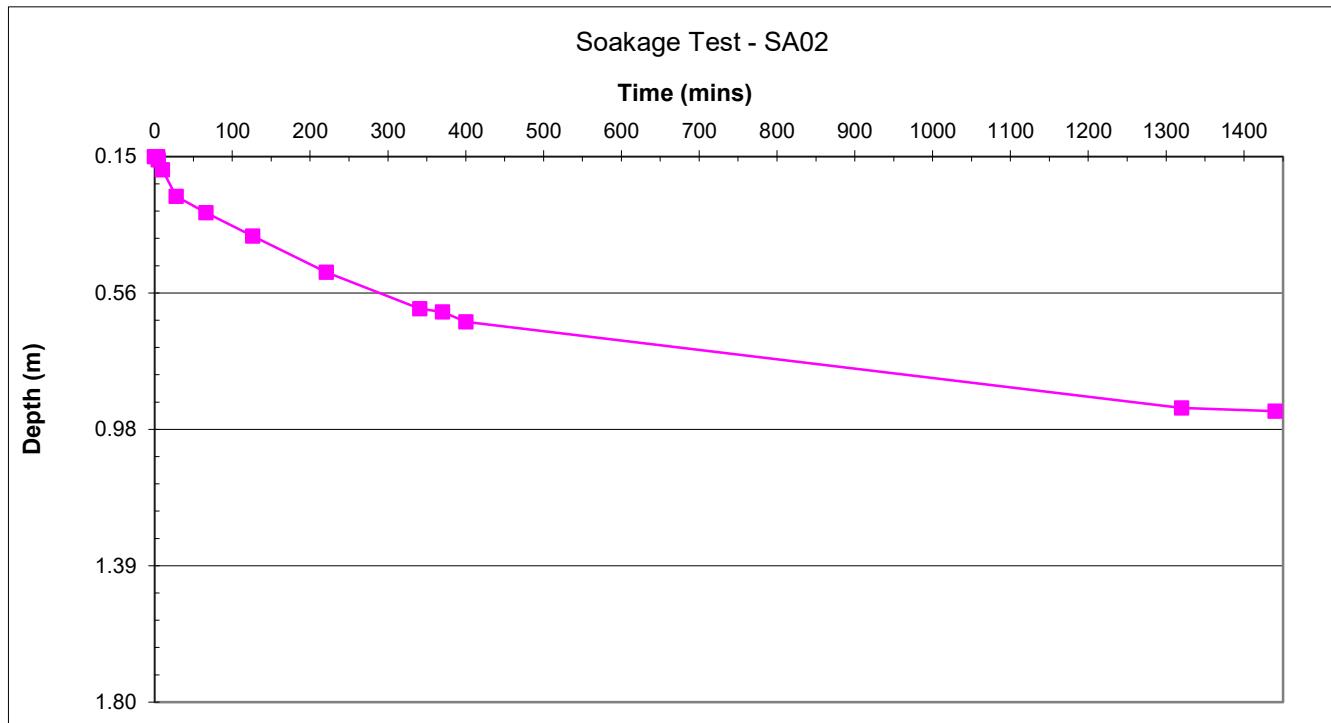


**Scheme** Chalk Road, Higham  
**Client** Richborough  
**Job ref.** 29524

**Page No.** 4  
**Calcs by** AL  
**Checked By** DT  
**Date** 16/04/24

## Soil Infiltration Test - Gravel Filled Method

(In general accordance with BRE Digest 365, 2016, Soakaway Design)


| Soakaway pit ref.  | SA02                                                                                                                                                                                                                                                                                                                                                       | Test 1 |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Length             | 1.90 m                                                                                                                                                                                                                                                                                                                                                     |        |
| Width              | 0.45 m                                                                                                                                                                                                                                                                                                                                                     |        |
| Depth              | 1.80 m                                                                                                                                                                                                                                                                                                                                                     |        |
| Ground water level | N/A m                                                                                                                                                                                                                                                                                                                                                      |        |
| Ground conditions  | 0.00-0.35m MADE GROUND: Grass over dark brown sandy, silty clay topsoil with occasional gravel sized fragments of quartzite, chert, and brick, and rare cobble sized fragments of brick.<br>0.35-1.80m Brown to yellowish brown, slightly sandy, slightly gravelly, silty CLAY. Gravels comprise, subrounded, fine to medium, chert.<br>(THANET FORMATION) |        |

| Time (mins) | Depth to water (m bgl) |
|-------------|------------------------|
| 0           | 0.15                   |
| 4           | 0.15                   |
| 5           | 0.16                   |
| 10          | 0.19                   |
| 28          | 0.27                   |
| 66          | 0.32                   |
| 126         | 0.39                   |
| 221         | 0.50                   |
| 341         | 0.61                   |
| 370         | 0.62                   |
| 400         | 0.65                   |
| 1320        | 0.91                   |
| 1440        | 0.92                   |

Effective storage depth = 1.65 m  
 75% effective storage depth = 1.24 m  
 (ie depth below GL) = 0.56 m  
 25% effective storage depth = 0.41 m  
 (ie depth below GL) = 1.39 m  
 effective storage depth 75%-25% = 0.83 m

Time to fall to 75% effective depth = 290 mins  
 Time to fall to 25% effective depth = N/A mins  
 Void Ratio = 40%  
 $V (75\%-25\%) = 0.28 \text{ m}^3$   
 $a (50\%) = 4.73 \text{ m}^2$   
 $t (75\%-25\%) = \text{N/A mins}$

**Insufficient soakage to derive an infiltration rate.**

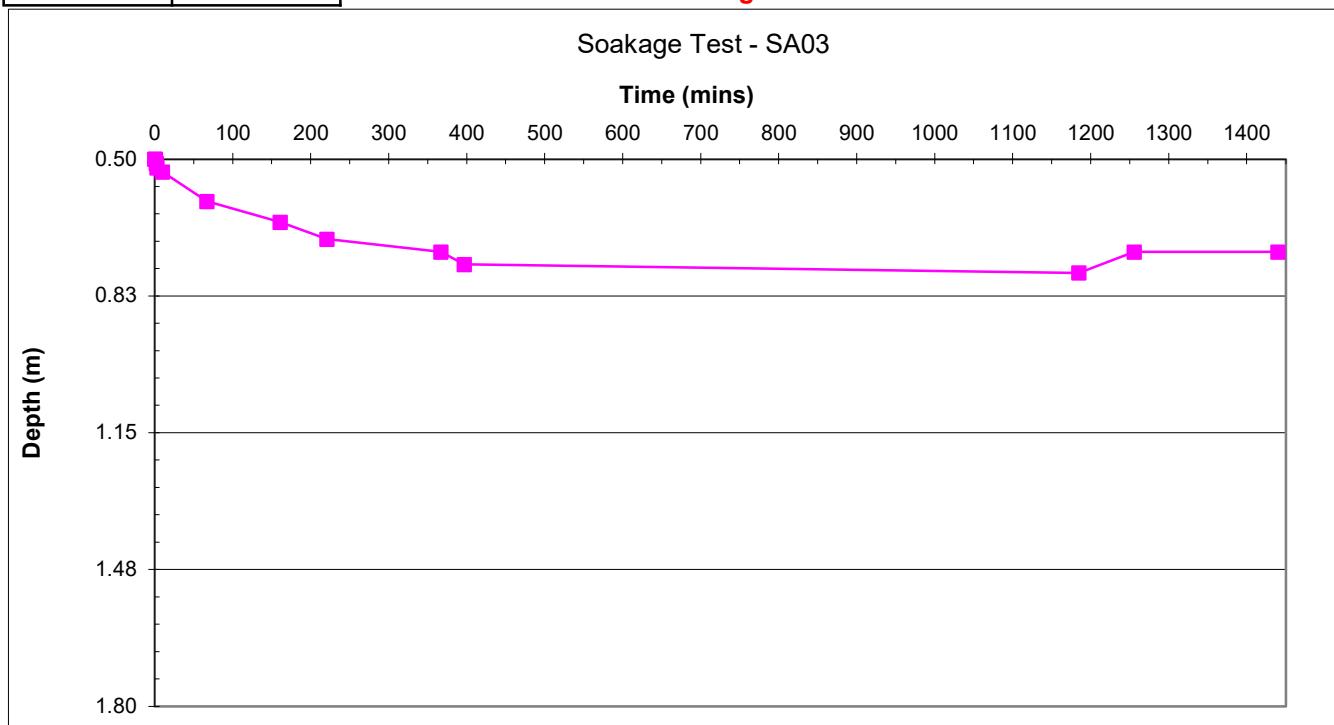




**Scheme** Chalk Road, Higham  
**Client** Richborough  
**Job ref.** 29524

**Page No.** 5  
**Calcs by** AL  
**Checked By** DT  
**Date** 16/04/25

## Soil Infiltration Test - Gravel Filled Method


(In general accordance with BRE Digest 365, 2016, Soakaway Design)

| Soakaway pit ref.  | SA03                                                                                                                                                                                                                                                                                                                     | Test 1 |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Length             | 1.90 m                                                                                                                                                                                                                                                                                                                   |        |
| Width              | 0.45 m                                                                                                                                                                                                                                                                                                                   |        |
| Depth              | 1.80 m                                                                                                                                                                                                                                                                                                                   |        |
| Ground water level | 1.80 m                                                                                                                                                                                                                                                                                                                   |        |
| Ground conditions  | 0.00-0.30m Grass over dark brown, sandy, silty clay TOPSOIL with gravel sized fragments of quartzite and chert.<br>0.30-1.80m Yellowish brown becoming orangish and greyish brown, slightly sandy, slightly gravelly, silty CLAY. Gravels comprise subangular to subrounded, fine to medium chert.<br>(THANET FORMATION) |        |

| Time (mins) | Depth to water (m bgl) |
|-------------|------------------------|
| 0           | 0.5                    |
| 1           | 0.50                   |
| 2           | 0.51                   |
| 3           | 0.52                   |
| 10          | 0.53                   |
| 67          | 0.60                   |
| 161         | 0.65                   |
| 221         | 0.69                   |
| 367         | 0.72                   |
| 397         | 0.75                   |
| 1185        | 0.77                   |
| 1256        | 0.72                   |
| 1440        | 0.72                   |

Effective storage depth = 1.30 m  
 75% effective storage depth = 0.98 m  
 (ie depth below GL) = 0.83 m  
 25% effective storage depth = 0.33 m  
 (ie depth below GL) = 1.48 m  
 effective storage depth 75%-25% = 0.65 m  
  
 Time to fall to 75% effective depth = N/A mins  
 Time to fall to 25% effective depth = N/A mins  
 Void Ratio = 40%  
 V (75%-25%) = 0.22 m<sup>3</sup>  
 a (50%) = 3.91 m<sup>2</sup>  
 t (75%-25%) = N/A mins

**Insufficient soakage to derive an infiltration rate.**

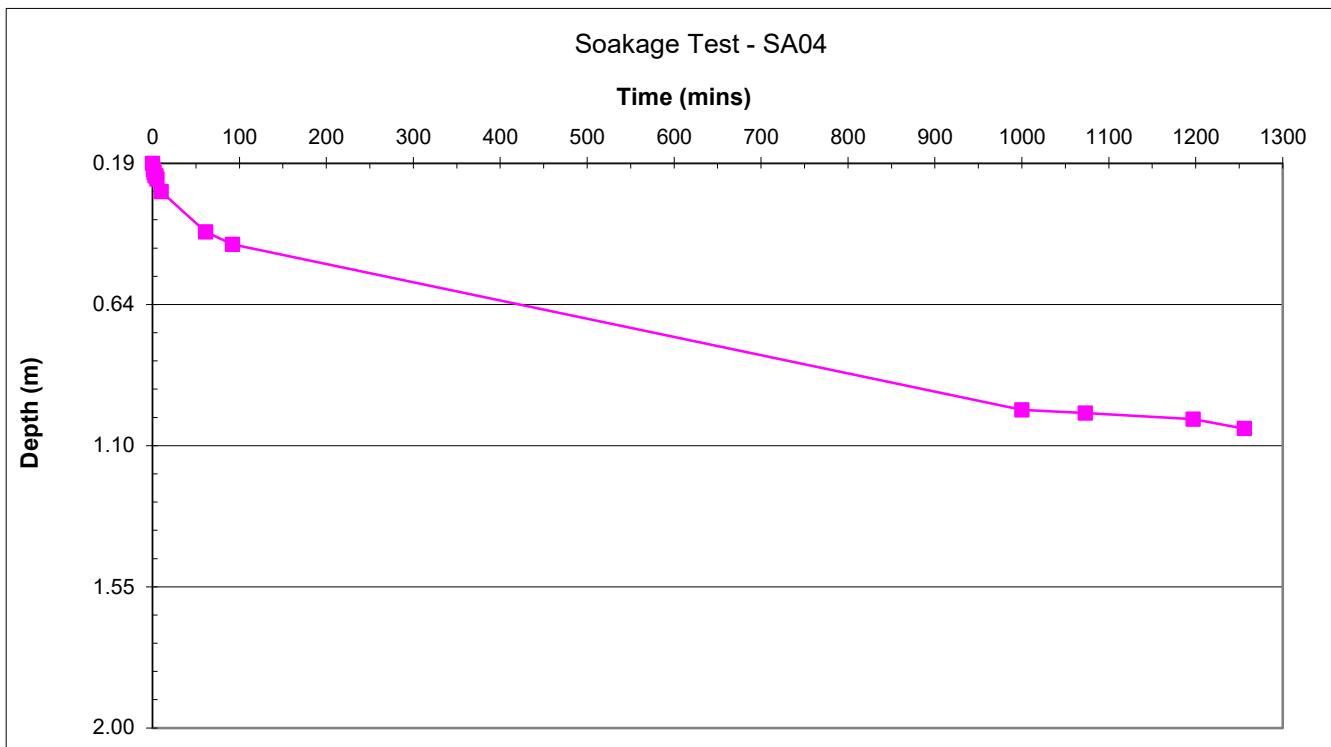




**Scheme** Chalk Road, Higham  
**Client** Richborough  
**Job ref.** 29524

**Page No.** 6  
**Calcs by** AL  
**Checked By** DT  
**Date** 16/04/25

## Soil Infiltration Test - Gravel Filled Method


(In general accordance with BRE Digest 365, 2016, Soakaway Design)

| Soakaway pit ref.  | SA04                                                                                                                                                                                                                                                                 | Test 1 |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Length             | 2.10 m                                                                                                                                                                                                                                                               |        |
| Width              | 0.45 m                                                                                                                                                                                                                                                               |        |
| Depth              | 2.00 m                                                                                                                                                                                                                                                               |        |
| Ground water level | 2.00 m                                                                                                                                                                                                                                                               |        |
| Ground conditions  | 0.00-0.45m MADE GROUND: Grass over brown, silty, sandy gravel sized fragments of chert, brick, and concrete, with cobble sized fragments of brick and concrete.<br>0.45-2.00m Light brown, slightly sandy, silty CLAY with some fine rootlets.<br>(THANET FORMATION) |        |

| Time (mins) | Depth to water (m bgl) |
|-------------|------------------------|
| 0           | 0.19                   |
| 1           | 0.21                   |
| 2           | 0.22                   |
| 3           | 0.23                   |
| 4           | 0.23                   |
| 5           | 0.24                   |
| 10          | 0.28                   |
| 61          | 0.41                   |
| 92          | 0.45                   |
| 1000        | 0.98                   |
| 1073        | 0.99                   |
| 1197        | 1.01                   |
| 1256        | 1.04                   |

Effective storage depth = 1.81 m  
 75% effective storage depth = 1.36 m  
 (ie depth below GL) = 0.64 m  
 25% effective storage depth = 0.45 m  
 (ie depth below GL) = 1.55 m  
 effective storage depth 75%-25% = 0.91 m  
  
 Time to fall to 75% effective depth = 415 mins  
 Time to fall to 25% effective depth = N/A mins  
 Void Ratio = 40%  
 V (75%-25%) = 0.34 m<sup>3</sup>  
 a (50%) = 5.56 m<sup>2</sup>  
 t (75%-25%) = N/A mins

**Insufficient soakage to derive an infiltration rate.**





**MEC**  
Consulting Group

MEC Consulting Group Ltd  
The Old Chapel, Station Road  
Hugglescote, Leicestershire  
LE67 2GB

**SA01**

Sheet 1 of 1

| Project No.<br>29524                                                                                                                                                         |  |                    | Exploratory<br>Hole ID: |                                                 | <b>SA01</b> |                         |       |                    |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------------|-------------------------|-------------------------------------------------|-------------|-------------------------|-------|--------------------|--|--|
| Location:<br>Higham                                                                                                                                                          |  | Logged By:<br>CC   |                         | Start Date:<br>10/04/2025                       |             | End Date:<br>10/04/2025 |       |                    |  |  |
| Client:<br>Richborough                                                                                                                                                       |  | Approved By:<br>DT |                         | Easting and Northing Co-ordinates:<br>571073.82 |             | Plant Used:<br>JCB 3CX  |       |                    |  |  |
| Strata Description                                                                                                                                                           |  | Legend             | Depth<br>(m)            | Level<br>(m AOD)                                | Samples     |                         | Tests | Groundwater<br>(m) |  |  |
| Type                                                                                                                                                                         |  | Depth              |                         |                                                 |             |                         |       |                    |  |  |
| MADE GROUND: Grass over dark brown sandy, silty clay topsoil with occasional gravel sized fragments of quartzite, chert and brick, and rare cobble sized fragments of brick. |  |                    | 0.30                    | 4.70                                            |             |                         |       |                    |  |  |
| Brown becoming orangish brown, silty CLAY.<br>THANET FORMATION                                                                                                               |  |                    |                         |                                                 |             |                         |       |                    |  |  |
| Becoming greyish black below 2.00m bgl                                                                                                                                       |  |                    | 2.10                    | 2.90                                            |             |                         |       |                    |  |  |
| End of Trial Pit                                                                                                                                                             |  |                    |                         |                                                 |             |                         |       |                    |  |  |

**Remarks:**

Exploratory hole location scanned with Cable Avoidance Tool and Signal Generator.  
Descriptions based on visual inspection by a Geo-environmental engineer.  
Groundwater was not encountered.  
Visual or olfactory evidence of contamination was not observed.  
Co-ordinates and elevations estimated from the topographical survey.

**Stability:** Stable

**Dimensions:**

Length: 1.70m  
Width: 0.45m  
Depth: 2.10m

**Key:**

B - Bulk Sample  
D - Disturbed Sample  
ES - Environmental Sample  
W - Water Sample  
PID - PID Reading  
HSV - Hand Shear Vane Reading



**MEC**  
Consulting Group

MEC Consulting Group Ltd  
The Old Chapel, Station Road  
Hugglescote, Leicestershire  
LE67 2GB

**SA02**

Sheet 1 of 1

| Project:<br>Chalk Road                                                                                                                                                        | Project No.<br>29524 | Start Date:<br>10/04/2025                       | End Date:<br>10/04/2025 | Plant Used:<br>JCB 3CX     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------|-------------------------|----------------------------|
| Location:<br>Higham                                                                                                                                                           | Logged By:<br>CC     | Easting and Northing Co-ordinates:<br>571095.24 | 173052.12               | Elevation (m AOD):<br>4.40 |
| Client:<br>Richborough                                                                                                                                                        | Approved By:<br>DT   |                                                 |                         |                            |
| Strata Description                                                                                                                                                            | Legend               | Depth (m)                                       | Level (m AOD)           | Samples                    |
| MADE GROUND: Grass over dark brown sandy, silty clay topsoil with occasional gravel sized fragments of quartzite, chert, and brick, and rare cobble sized fragments of brick. |                      | 0.35                                            | 4.05                    | Type Depth                 |
| Brown to yellowish brown, slightly sandy, slightly gravelly, silty CLAY. Gravels comprise, subrounded, fine to medium, chert.<br>THANET FORMATION                             |                      |                                                 |                         |                            |
| End of Trial Pit                                                                                                                                                              |                      | 1.80                                            | 2.60                    |                            |

**Remarks:**

Exploratory hole location scanned with Cable Avoidance Tool and Signal Generator.  
Descriptions based on visual inspection by a Geo-environmental engineer.  
Groundwater was not encountered.  
Visual or olfactory evidence of contamination was not observed.  
Co-ordinates and elevations estimated from the topographical survey.

**Dimensions:**

Length:  
1.90m  
Width:  
0.45m  
Depth:  
1.80m

**Key:**

B - Bulk Sample  
D - Disturbed Sample  
ES - Environmental Sample  
W - Water Sample  
PID - PID Reading  
HSV - Hand Shear Vane Reading

**Stability:** Stable



**MEC**  
Consulting Group

MEC Consulting Group Ltd  
The Old Chapel, Station Road  
Hugglescote, Leicestershire  
LE67 2GB

**SA03**

Sheet 1 of 1

| Project:                                                                                                                                                             | Chalk Road  | Project No.  | Start Date:                        | End Date:          | Plant Used: |                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|------------------------------------|--------------------|-------------|-----------------|
|                                                                                                                                                                      |             | 29524        | 10/04/2025                         | 10/04/2025         | JCB 3CX     |                 |
| Location:                                                                                                                                                            | Higham      | Logged By:   |                                    |                    |             |                 |
|                                                                                                                                                                      |             | CC           |                                    |                    |             |                 |
| Client:                                                                                                                                                              | Richborough | Approved By: | Easting and Northing Co-ordinates: | Elevation (m AOD): |             |                 |
|                                                                                                                                                                      |             | DT           | 571124.03                          | 173078.17          | 4.20        |                 |
| Strata Description                                                                                                                                                   | Legend      | Depth (m)    | Level (m AOD)                      | Samples            | Tests       | Groundwater (m) |
|                                                                                                                                                                      |             |              |                                    | Type               |             |                 |
| Grass over dark brown, sandy, silty clay TOPSOIL with gravel sized fragments of quartzite and chert.                                                                 |             |              |                                    |                    |             |                 |
| Yellowish brown becoming orangish and greyish brown, slightly sandy, slightly gravelly, silty CLAY. Gravels comprise subangular to subrounded, fine to medium chert. |             | 0.30         | 3.90                               |                    |             |                 |
| THANET FORMATION                                                                                                                                                     |             |              |                                    |                    |             |                 |
| End of Trial Pit                                                                                                                                                     |             | 1.80         | 2.40                               |                    |             | 1.80            |

**Remarks:**

Exploratory hole location scanned with Cable Avoidance Tool and Signal Generator. Descriptions based on visual inspection by a Geo-environmental engineer. Groundwater seepage at 1.80m bgl. Visual or olfactory evidence of contamination was not observed. Co-ordinates and elevations estimated from the topographical survey.

**Stability:** Stable

**Dimensions:**

Length: 1.90m  
Width: 0.45m

Depth: 1.80m

**Key:**

B - Bulk Sample  
D - Disturbed Sample  
ES - Environmental Sample  
W - Water Sample  
PID - PID Reading  
HSV - Hand Shear Vane Reading



**MEC**  
Consulting Group

MEC Consulting Group Ltd  
The Old Chapel, Station Road  
Hugglescote, Leicestershire  
LE67 2GB

**SA04**

Sheet 1 of 1

| Project:                                                                                                                                             | Chalk Road  | Project No.  | Start Date: | End Date:     | Plant Used:        |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-------------|---------------|--------------------|
|                                                                                                                                                      |             | 29524        |             |               | JCB 3CX            |
| Location:                                                                                                                                            | Higham      | Logged By:   | 10/04/2025  | 10/04/2025    | Elevation (m AOD): |
| Client:                                                                                                                                              | Richborough | Approved By: | 571143.28   |               | 4.55               |
| Strata Description                                                                                                                                   |             | Legend       | Depth (m)   | Level (m AOD) | Samples            |
| MADE GROUND: Grass over brown, silty, sandy gravel sized fragments of chert, brick, and concrete, with cobble sized fragments of brick and concrete. |             |              |             |               | Type               |
| Light brown, slightly sandy, silty CLAY with some fine rootlets.<br>THANET FORMATION                                                                 |             |              | 0.45        | 4.10          | Depth              |
| End of Trial Pit                                                                                                                                     |             |              | 2.00        | 2.55          | 2.00               |

**Remarks:**

Exploratory hole location scanned with Cable Avoidance Tool and Signal Generator.  
Descriptions based on visual inspection by a Geo-environmental engineer.  
Groundwater seepage encountered at 2.00m bgl.  
Visual or olfactory evidence of contamination was not observed.  
Co-ordinates and elevations estimated from the topographical survey.

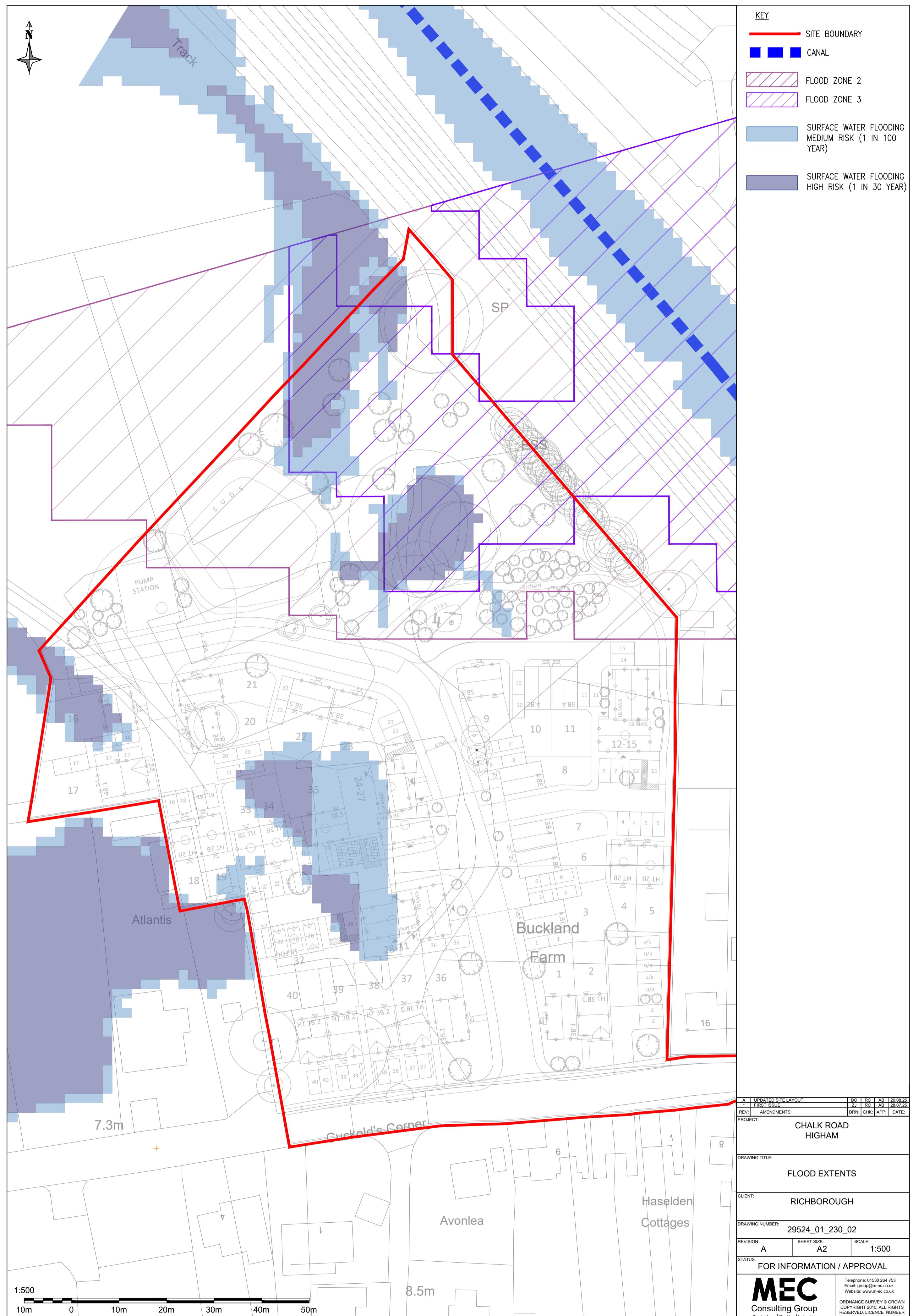
**Stability:** Stable

**Dimensions:**

Length: 2.10m  
Width: 0.45m  
Depth: 2.00m

**Key:**

B - Bulk Sample  
D - Disturbed Sample  
ES - Environmental Sample  
W - Water Sample  
PID - PID Reading  
HSV - Hand Shear Vane Reading



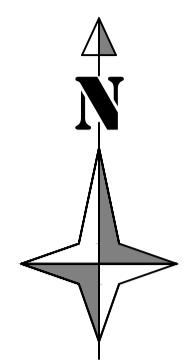

**MEC**  
Consulting Group

# APPENDICES

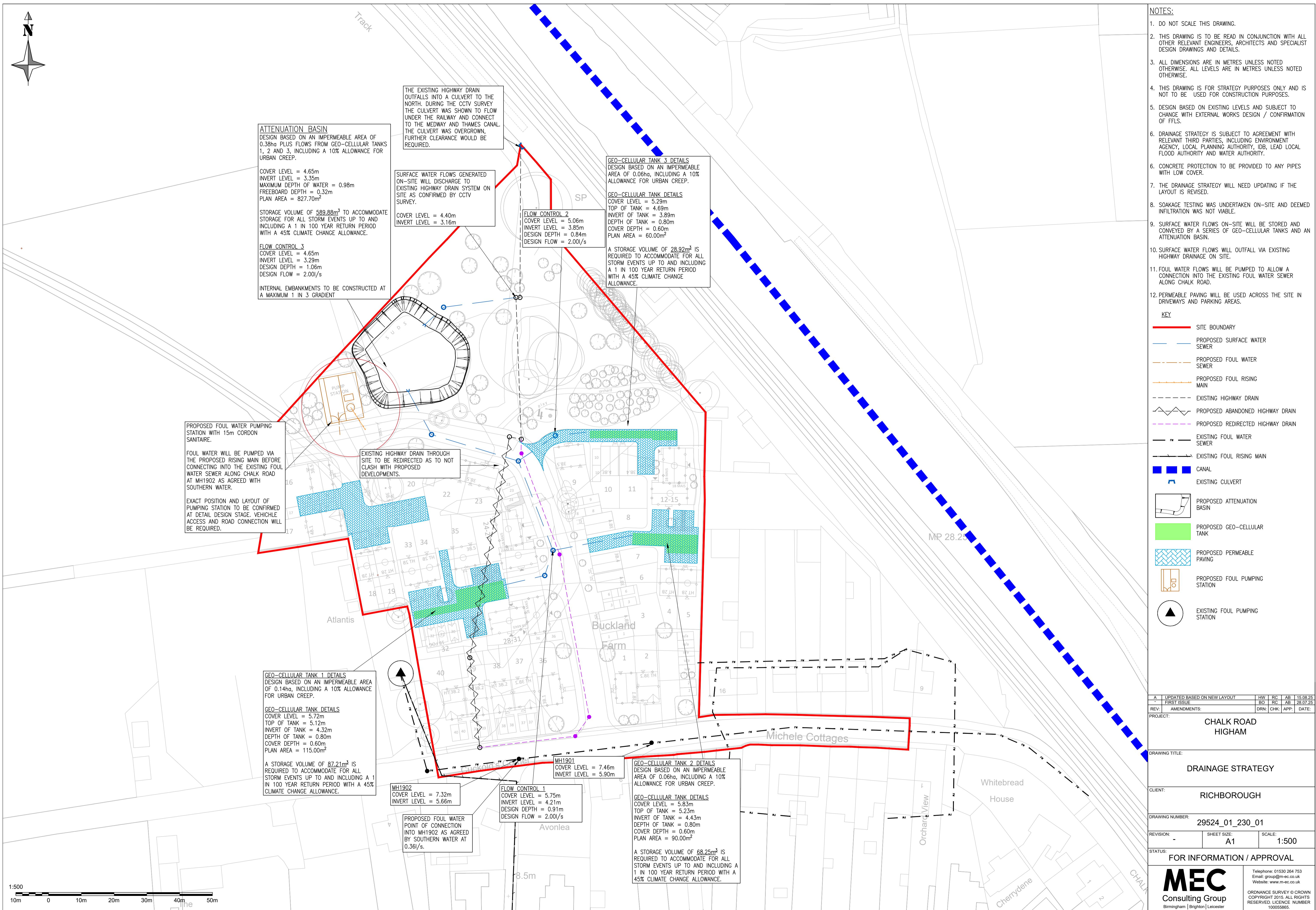


## APPENDIX H






**MEC**  
Consulting Group


# APPENDICES



## APPENDIX I



Track





**MEC**  
Consulting Group

# APPENDICES



## APPENDIX J



|                  |                 |
|------------------|-----------------|
| <b>Doc. Ref.</b> | 29524-CALC-0101 |
| <b>Sheet</b>     | 1 of 10         |
| <b>Engineer</b>  | B. Oyston       |
| <b>Date</b>      | 28 Jul 25       |
| <b>Revision</b>  | -               |

## DESIGN CALCULATIONS FRONT SHEET

|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>SCHEME</b>                                                           | Chalk Road, Higham.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>CLIENT</b>                                                           | Richborough.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>ASPECTS OF SCHEME TO BE DESIGNED</b>                                 | <ul style="list-style-type: none"> <li>Greenfield Calculations</li> <li>Brownfield Calculations</li> <li>Surface Water Sewer Design</li> <li>1 in 2, 1 in 30 year +35% climate change and 1 in 100 year +45% climate change design simulations</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>CODES OF PRACTICE, DESIGN SPECIFICATIONS &amp; BRITISH STANDARDS</b> | <ul style="list-style-type: none"> <li>Design and analysis of urban storm drainage. Wallingford Procedure Vol. 1.</li> <li>Sustainable Drainage Systems – Non-statutory technical standards for sustainable drainage systems – 2015.</li> <li>The SuDS Manual – CIRIA C753.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>NOTES</b>                                                            | <ul style="list-style-type: none"> <li>In accordance with the National SuDS Standards, the strategy involves conveying surface water flows to multiple geo-cellular tanks and an attenuation basin before discharging into the existing highway drainage on site at a controlled rate of 2.0l/s.</li> <li>Existing runoff conditions have been calculated using the Modified Rational Method to calculate the Brownfield Discharge Rate. For the existing impermeable area of 0.39ha, the peak discharge rate has been calculated as 48.8l/s, based on a rainfall intensity of 50mm/hr.</li> <li>Existing greenfield runoff conditions have been calculated using the FEH module within Flow Causeway. For the proposed impermeable area of 0.58ha, the QBAR Greenfield Rate has been calculated as 0.3l/s. As this is a low discharge rate, that may create blockages in the system, a minimum discharge rate of 2.0l/s has been applied. This rate is an 95% betterment from the Brownfield Rate.</li> <li>Drainage calculations were carried out within Flow Causeway.</li> </ul> |

## INDEX

| Pages | Calculations                                                                                                                                                         | Checked by | Date       |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| 2     | Modified Rational Method to Calculate Brownfield Discharge Rates                                                                                                     | RC         | 28/07/2025 |
| 3-10  | QBAR calculations and surface water design details and simulation results for 1 in 2, 1 in 30 year +35% climate change and 1 in 100 year +45% climate change events. | RC         | 28/07/2025 |



## Brownfield Run-off Calculation

**Project:** Chalk Road, Higham

**File Ref:** 29524

**O.S. Grid Ref:** 571119, 172997

---

The Rational Method equation used to calculate peak stormwater runoff rate is:

$$Q = 2.78 CiA$$

Where;

$Q$  = The peak stormwater runoff rate from the drainage area (L/S).

$2.78$  = Conversion factor to use standard units.

$C$  = Runoff coefficient for drainage area (A).

$i$  = The intensity of the design storm for peak runoff calculation (mm/hr).

$A$  = The area of the watershed that drains to the point for which the peak runoff rate is calculated (ha).

The following figures will be used to calculate the peak runoff for the site;

$C = 0.9$ , as not all run-off will discharge from the site.

$i = 50$  mm/hr

$A = 0.39$  ha

Peak run-off for the site;

$$Q = 2.78 \times 0.9 \times 50 \times 0.39$$

$$Q = 48.8 \text{ l/s}$$

|                                                                                                 |                                                          |                                                    |                                                     |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|
|  <b>Causeway</b> | MEC Consulting Group                                     | File: 29524 Flow Design.pfd                        | Page 3                                              |
|                                                                                                 | The Old Chapel<br>Station Road, Hugglescote<br>Coalville | Network: Storm Network<br>Ben Oyston<br>28/07/2025 | 29524<br>Chalk Road, Higham<br>Surface Water Design |

### Design Settings

|                                      |        |                                    |               |
|--------------------------------------|--------|------------------------------------|---------------|
| Rainfall Methodology                 | FEH-22 | Minimum Velocity (m/s)             | 1.00          |
| Return Period (years)                | 100    | Connection Type                    | Level Soffits |
| Additional Flow (%)                  | 0      | Minimum Backdrop Height (m)        | 0.200         |
| CV                                   | 1.000  | Preferred Cover Depth (m)          | 1.200         |
| Time of Entry (mins)                 | 5.00   | Include Intermediate Ground        | ✓             |
| Maximum Time of Concentration (mins) | 30.00  | Enforce best practice design rules | ✓             |
| Maximum Rainfall (mm/hr)             | 100.0  |                                    |               |

### Nodes

| Name           | Area (ha) | T of E (mins) | Cover Level (m) | Diameter (mm) | Depth (m) |
|----------------|-----------|---------------|-----------------|---------------|-----------|
| Basin          | 0.380     | 5.00          | 4.650           | 1200          | 1.300     |
| Flow Control 3 |           |               | 4.650           | 1200          | 1.362     |
| Tank 1         | 0.140     | 5.00          | 5.720           |               | 1.400     |
| Tank 2         | 0.060     | 5.00          | 5.780           |               | 1.460     |
| Tank 3         | 0.060     | 5.00          | 5.290           |               | 1.400     |
| Flow Control 1 |           |               | 5.750           | 1200          | 1.541     |
| Flow Control 2 |           |               | 5.290           | 1200          | 1.444     |
| SM1            |           |               | 5.060           | 1200          | 1.281     |
| Outfall        |           |               | 4.400           | 1200          | 1.240     |

### Links

| Name  | US Node        | DS Node        | Length (m) | ks (mm) / n | US IL (m) | DS IL (m) | Fall (m) | Slope (1:X) | Dia (mm) | T of C (mins) | Rain (mm/hr) |
|-------|----------------|----------------|------------|-------------|-----------|-----------|----------|-------------|----------|---------------|--------------|
| 1.000 | Tank 1         | Flow Control 1 | 20.000     | 0.600       | 4.320     | 4.209     | 0.111    | 180.2       | 300      | 5.29          | 100.0        |
| 2.000 | Tank 2         | Flow Control 1 | 25.000     | 0.600       | 4.320     | 4.209     | 0.111    | 225.0       | 300      | 5.40          | 100.0        |
| 1.001 | Flow Control 1 | SM1            | 30.000     | 0.600       | 4.209     | 3.779     | 0.430    | 69.8        | 300      | 5.66          | 100.0        |
| 3.000 | Tank 3         | Flow Control 2 | 10.000     | 0.600       | 3.890     | 3.846     | 0.044    | 225.0       | 300      | 5.16          | 100.0        |
| 3.001 | Flow Control 2 | SM1            | 15.000     | 0.600       | 3.846     | 3.779     | 0.067    | 225.0       | 300      | 5.40          | 100.0        |
| 1.002 | SM1            | Basin          | 40.000     | 0.600       | 3.779     | 3.350     | 0.429    | 93.2        | 300      | 6.07          | 100.0        |

| Name  | Vel (m/s) | Cap (l/s) | Flow (l/s) | US Depth (m) | DS Depth (m) | $\Sigma$ Area (ha) | $\Sigma$ Add Inflow (l/s) |
|-------|-----------|-----------|------------|--------------|--------------|--------------------|---------------------------|
| 1.000 | 1.168     | 82.6      | 50.6       | 1.100        | 1.241        | 0.140              | 0.0                       |
| 2.000 | 1.044     | 73.8      | 21.7       | 1.160        | 1.241        | 0.060              | 0.0                       |
| 1.001 | 1.884     | 133.2     | 72.3       | 1.241        | 0.981        | 0.200              | 0.0                       |
| 3.000 | 1.044     | 73.8      | 21.7       | 1.100        | 1.144        | 0.060              | 0.0                       |
| 3.001 | 1.044     | 73.8      | 21.7       | 1.144        | 0.981        | 0.060              | 0.0                       |
| 1.002 | 1.628     | 115.1     | 94.0       | 0.981        | 1.000        | 0.260              | 0.0                       |

Links

| Name  | US Node        | DS Node        | Length (m) | ks (mm) / n | US IL (m) | DS IL (m) | Fall (m) | Slope (1:X) | Dia (mm) | T of C (mins) | Rain (mm/hr) |
|-------|----------------|----------------|------------|-------------|-----------|-----------|----------|-------------|----------|---------------|--------------|
| 1.003 | Basin          | Flow Control 3 | 10.000     | 0.600       | 3.350     | 3.288     | 0.062    | 160.0       | 225      | 6.24          | 100.0        |
| 1.004 | Flow Control 3 | Outfall        | 20.000     | 0.600       | 3.288     | 3.160     | 0.128    | 156.3       | 225      | 6.56          | 100.0        |

| Name  | Vel (m/s) | Cap (l/s) | Flow (l/s) | US Depth (m) | DS Depth (m) | Σ Area (ha) | Σ Add Inflow (l/s) |
|-------|-----------|-----------|------------|--------------|--------------|-------------|--------------------|
| 1.003 | 1.031     | 41.0      | 231.3      | 1.075        | 1.137        | 0.640       | 0.0                |
| 1.004 | 1.043     | 41.5      | 231.3      | 1.137        | 1.015        | 0.640       | 0.0                |

Pipeline Schedule

| Link  | Length (m) | Slope (1:X) | Dia (mm) | Link Type | US CL (m) | US IL (m) | US Depth (m) | DS CL (m) | DS IL (m) | DS Depth (m) |
|-------|------------|-------------|----------|-----------|-----------|-----------|--------------|-----------|-----------|--------------|
| 1.000 | 20.000     | 180.2       | 300      | Circular  | 5.720     | 4.320     | 1.100        | 5.750     | 4.209     | 1.241        |
| 2.000 | 25.000     | 225.0       | 300      | Circular  | 5.780     | 4.320     | 1.160        | 5.750     | 4.209     | 1.241        |
| 1.001 | 30.000     | 69.8        | 300      | Circular  | 5.750     | 4.209     | 1.241        | 5.060     | 3.779     | 0.981        |
| 3.000 | 10.000     | 225.0       | 300      | Circular  | 5.290     | 3.890     | 1.100        | 5.290     | 3.846     | 1.144        |
| 3.001 | 15.000     | 225.0       | 300      | Circular  | 5.290     | 3.846     | 1.144        | 5.060     | 3.779     | 0.981        |
| 1.002 | 40.000     | 93.2        | 300      | Circular  | 5.060     | 3.779     | 0.981        | 4.650     | 3.350     | 1.000        |
| 1.003 | 10.000     | 160.0       | 225      | Circular  | 4.650     | 3.350     | 1.075        | 4.650     | 3.288     | 1.137        |
| 1.004 | 20.000     | 156.3       | 225      | Circular  | 4.650     | 3.288     | 1.137        | 4.400     | 3.160     | 1.015        |

| Link  | US Node        | Dia (mm) | Node Type | MH Type   | DS Node        | Dia (mm) | Node Type | MH Type   |
|-------|----------------|----------|-----------|-----------|----------------|----------|-----------|-----------|
| 1.000 | Tank 1         |          | Manhole   | Adoptable | Flow Control 1 | 1200     | Manhole   | Adoptable |
| 2.000 | Tank 2         |          | Manhole   | Adoptable | Flow Control 1 | 1200     | Manhole   | Adoptable |
| 1.001 | Flow Control 1 | 1200     | Manhole   | Adoptable | SM1            |          | Manhole   | Adoptable |
| 3.000 | Tank 3         |          | Manhole   | Adoptable | Flow Control 2 | 1200     | Manhole   | Adoptable |
| 3.001 | Flow Control 2 | 1200     | Manhole   | Adoptable | SM1            | 1200     | Manhole   | Adoptable |
| 1.002 | SM1            | 1200     | Manhole   | Adoptable | Basin          | 1200     | Manhole   | Adoptable |
| 1.003 | Basin          | 1200     | Manhole   | Adoptable | Flow Control 3 | 1200     | Manhole   | Adoptable |
| 1.004 | Flow Control 3 | 1200     | Manhole   | Adoptable | Outfall        | 1200     | Manhole   | Adoptable |

Manhole Schedule

| Node           | CL (m) | Depth (m) | Dia (mm) | Connections | Link  | IL (m) | Dia (mm) |
|----------------|--------|-----------|----------|-------------|-------|--------|----------|
| Basin          | 4.650  | 1.300     | 1200     | 1           | 1.002 | 3.350  | 300      |
| Flow Control 3 | 4.650  | 1.362     | 1200     | 0           | 1.003 | 3.350  | 225      |
|                |        |           |          | 1           | 1.003 | 3.288  | 225      |
|                |        |           |          | 0           | 1.004 | 3.288  | 225      |

Manhole Schedule

| Node           | CL (m) | Depth (m) | Dia (mm) | Connections | Link  | IL (m) | Dia (mm) |
|----------------|--------|-----------|----------|-------------|-------|--------|----------|
| Tank 1         | 5.720  | 1.400     |          | 0           | 1.000 | 4.320  | 300      |
| Tank 2         | 5.780  | 1.460     |          | 0           | 2.000 | 4.320  | 300      |
| Tank 3         | 5.290  | 1.400     |          | 0           | 3.000 | 3.890  | 300      |
| Flow Control 1 | 5.750  | 1.541     | 1200     | 1           | 2.000 | 4.209  | 300      |
|                |        |           |          | 2           | 1.000 | 4.209  | 300      |
| Flow Control 2 | 5.290  | 1.444     | 1200     | 0           | 1.001 | 4.209  | 300      |
|                |        |           |          | 1           | 3.000 | 3.846  | 300      |
| SM1            | 5.060  | 1.281     | 1200     | 0           | 3.001 | 3.779  | 300      |
|                |        |           |          | 1           | 1.001 | 3.779  | 300      |
| Outfall        | 4.400  | 1.240     | 1200     | 0           | 1.002 | 3.779  | 300      |
|                |        |           |          | 1           | 1.004 | 3.160  | 225      |

Simulation Settings

|                      |        |                            |     |                        |     |
|----------------------|--------|----------------------------|-----|------------------------|-----|
| Rainfall Methodology | FEH-22 | Skip Steady State          | x   | 2 year (l/s)           | 0.2 |
| Summer CV            | 1.000  | Drain Down Time (mins)     | 240 | 30 year (l/s)          | 0.5 |
| Winter CV            | 1.000  | Additional Storage (m³/ha) | 0.0 | 100 year (l/s)         | 0.7 |
| Analysis Speed       | Normal | Check Discharge Rate(s)    | ✓   | Check Discharge Volume | x   |

Storm Durations

15 | 30 | 60 | 120 | 180 | 240 | 360 | 480 | 600 | 720 | 960 | 1440

| Return Period (years) | Climate Change (CC %) | Additional Area (A %) | Additional Flow (Q %) |
|-----------------------|-----------------------|-----------------------|-----------------------|
| 2                     | 0                     | 0                     | 0                     |
| 30                    | 35                    | 0                     | 0                     |
| 100                   | 45                    | 0                     | 0                     |

Pre-development Discharge Rate

|                              |            |                             |       |
|------------------------------|------------|-----------------------------|-------|
| Site Makeup                  | Greenfield | Region                      | 1     |
| Greenfield Method            | FEH        | QBar/QMed conversion factor | 1.111 |
| Positively Drained Area (ha) | 0.580      | Growth Factor 2 year        | 0.90  |
| SAAR (mm)                    | 571        | Growth Factor 30 year       | 1.95  |
| Host                         | 1          | Growth Factor 100 year      | 2.48  |
| BFIHost                      | 0.829      | Betterment (%)              | 0     |

**Pre-development Discharge Rate**

|                |     |                  |     |
|----------------|-----|------------------|-----|
| QMed           | 0.2 | Q 30 year (l/s)  | 0.5 |
| QBar           | 0.3 | Q 100 year (l/s) | 0.7 |
| Q 2 year (l/s) | 0.2 |                  |     |

**Node Flow Control 3 Online Hydro-Brake® Control**

|                          |       |                         |                                |
|--------------------------|-------|-------------------------|--------------------------------|
| Flap Valve               | x     | Objective               | (HE) Minimise upstream storage |
| Replaces Downstream Link | ✓     | Sump Available          | ✓                              |
| Invert Level (m)         | 3.288 | Product Number          | CTL-SHE-0066-2000-1062-2000    |
| Design Depth (m)         | 1.062 | Min Outlet Diameter (m) | 0.100                          |
| Design Flow (l/s)        | 2.0   | Min Node Diameter (mm)  | 1200                           |

**Node Flow Control 1 Online Hydro-Brake® Control**

|                          |       |                         |                                |
|--------------------------|-------|-------------------------|--------------------------------|
| Flap Valve               | x     | Objective               | (HE) Minimise upstream storage |
| Replaces Downstream Link | ✓     | Sump Available          | ✓                              |
| Invert Level (m)         | 4.209 | Product Number          | CTL-SHE-0069-2000-0911-2000    |
| Design Depth (m)         | 0.911 | Min Outlet Diameter (m) | 0.100                          |
| Design Flow (l/s)        | 2.0   | Min Node Diameter (mm)  | 1200                           |

**Node Flow Control 2 Online Hydro-Brake® Control**

|                          |       |                         |                                |
|--------------------------|-------|-------------------------|--------------------------------|
| Flap Valve               | x     | Objective               | (HE) Minimise upstream storage |
| Replaces Downstream Link | ✓     | Sump Available          | ✓                              |
| Invert Level (m)         | 3.846 | Product Number          | CTL-SHE-0070-2000-0844-2000    |
| Design Depth (m)         | 0.844 | Min Outlet Diameter (m) | 0.100                          |
| Design Flow (l/s)        | 2.0   | Min Node Diameter (mm)  | 1200                           |

**Node Basin Depth/Area Storage Structure**

|                             |         |               |      |                           |       |
|-----------------------------|---------|---------------|------|---------------------------|-------|
| Base Inf Coefficient (m/hr) | 0.00000 | Safety Factor | 2.0  | Invert Level (m)          | 3.350 |
| Side Inf Coefficient (m/hr) | 0.00000 | Porosity      | 1.00 | Time to half empty (mins) |       |

| Depth | Area              | Inf Area          | Depth | Area              | Inf Area          | Depth | Area              | Inf Area          |
|-------|-------------------|-------------------|-------|-------------------|-------------------|-------|-------------------|-------------------|
| (m)   | (m <sup>2</sup> ) | (m <sup>2</sup> ) | (m)   | (m <sup>2</sup> ) | (m <sup>2</sup> ) | (m)   | (m <sup>2</sup> ) | (m <sup>2</sup> ) |
| 0.000 | 466.2             | 0.0               | 1.000 | 735.8             | 0.0               | 1.300 | 827.7             | 0.0               |

**Node Tank 1 Depth/Area Storage Structure**

|                             |         |               |      |                           |       |
|-----------------------------|---------|---------------|------|---------------------------|-------|
| Base Inf Coefficient (m/hr) | 0.00000 | Safety Factor | 2.0  | Invert Level (m)          | 4.320 |
| Side Inf Coefficient (m/hr) | 0.00000 | Porosity      | 0.95 | Time to half empty (mins) |       |

| Depth | Area              | Inf Area          | Depth | Area              | Inf Area          | Depth | Area              | Inf Area          |
|-------|-------------------|-------------------|-------|-------------------|-------------------|-------|-------------------|-------------------|
| (m)   | (m <sup>2</sup> ) | (m <sup>2</sup> ) | (m)   | (m <sup>2</sup> ) | (m <sup>2</sup> ) | (m)   | (m <sup>2</sup> ) | (m <sup>2</sup> ) |
| 0.000 | 115.0             | 0.0               | 0.800 | 115.0             | 0.0               | 0.801 | 0.0               | 0.0               |

**Node Tank 2 Depth/Area Storage Structure**

|                             |         |               |      |                           |       |
|-----------------------------|---------|---------------|------|---------------------------|-------|
| Base Inf Coefficient (m/hr) | 0.00000 | Safety Factor | 2.0  | Invert Level (m)          | 4.320 |
| Side Inf Coefficient (m/hr) | 0.00000 | Porosity      | 0.95 | Time to half empty (mins) |       |

| Depth | Area              | Inf Area          | Depth | Area              | Inf Area          | Depth | Area              | Inf Area          |
|-------|-------------------|-------------------|-------|-------------------|-------------------|-------|-------------------|-------------------|
| (m)   | (m <sup>2</sup> ) | (m <sup>2</sup> ) | (m)   | (m <sup>2</sup> ) | (m <sup>2</sup> ) | (m)   | (m <sup>2</sup> ) | (m <sup>2</sup> ) |
| 0.000 | 90.0              | 0.0               | 0.800 | 90.0              | 0.0               | 0.801 | 0.0               | 0.0               |

**Node Tank 3 Depth/Area Storage Structure**

|                             |         |               |      |                           |       |
|-----------------------------|---------|---------------|------|---------------------------|-------|
| Base Inf Coefficient (m/hr) | 0.00000 | Safety Factor | 2.0  | Invert Level (m)          | 3.890 |
| Side Inf Coefficient (m/hr) | 0.00000 | Porosity      | 0.95 | Time to half empty (mins) | 62    |

| Depth<br>(m) | Area<br>(m <sup>2</sup> ) | Inf Area<br>(m <sup>2</sup> ) | Depth<br>(m) | Area<br>(m <sup>2</sup> ) | Inf Area<br>(m <sup>2</sup> ) | Depth<br>(m) | Area<br>(m <sup>2</sup> ) | Inf Area<br>(m <sup>2</sup> ) |
|--------------|---------------------------|-------------------------------|--------------|---------------------------|-------------------------------|--------------|---------------------------|-------------------------------|
| 0.000        | 60.0                      | 0.0                           | 0.800        | 60.0                      | 0.0                           | 0.801        | 0.0                       | 0.0                           |

Results for 2 year Critical Storm Duration. Lowest mass balance: 99.79%

| Node Event                  | US Node        | Peak (mins)  | Level (m)      | Depth (m)     | Inflow (l/s)   | Node Vol (m³) | Flood (m³)    | Status                                         |
|-----------------------------|----------------|--------------|----------------|---------------|----------------|---------------|---------------|------------------------------------------------|
| 720 minute winter           | Basin          | 690          | 3.585          | 0.235         | 9.2            | 117.1905      | 0.0000        | <span style="color: orange;">SURCHARGED</span> |
| 600 minute winter           | Flow Control 3 | 615          | 3.593          | 0.305         | 3.9            | 0.3449        | 0.0000        | <span style="color: orange;">SURCHARGED</span> |
| 240 minute summer           | Tank 1         | 172          | 4.435          | 0.115         | 7.7            | 12.5215       | 0.0000        | OK                                             |
| 240 minute summer           | Tank 2         | 168          | 4.435          | 0.115         | 4.3            | 9.8028        | 0.0000        | OK                                             |
| 120 minute summer           | Tank 3         | 76           | 3.961          | 0.071         | 4.8            | 4.0624        | 0.0000        | OK                                             |
| 240 minute summer           | Flow Control 1 | 168          | 4.435          | 0.226         | 3.5            | 0.2551        | 0.0000        | OK                                             |
| 120 minute summer           | Flow Control 2 | 76           | 3.961          | 0.115         | 1.9            | 0.1303        | 0.0000        | OK                                             |
| 120 minute summer           | SM1            | 80           | 3.816          | 0.037         | 3.8            | 0.0419        | 0.0000        | OK                                             |
| 15 minute summer            | Outfall        | 1            | 3.160          | 0.000         | 1.7            | 0.0000        | 0.0000        | OK                                             |
| Link Event (Upstream Depth) | US Node        | Link         | DS Node        | Outflow (l/s) | Velocity (m/s) | Flow/Cap      | Link Vol (m³) | Discharge Vol (m³)                             |
| 720 minute winter           | Basin          | 1.003        | Flow Control 3 | 4.0           | 0.224          | 0.096         | 0.3977        |                                                |
| 600 minute winter           | Flow Control 3 | Hydro-Brake® | Outfall        | 1.9           |                |               |               | 77.0                                           |
| 240 minute summer           | Tank 1         | 1.000        | Flow Control 1 | 3.5           | 0.176          | 0.042         | 0.8151        |                                                |
| 240 minute summer           | Tank 2         | 2.000        | Flow Control 1 | -1.3          | 0.080          | -0.018        | 1.0195        |                                                |
| 120 minute summer           | Tank 3         | 3.000        | Flow Control 2 | 1.9           | 0.204          | 0.026         | 0.1884        |                                                |
| 240 minute summer           | Flow Control 1 | Hydro-Brake® | SM1            | 2.0           |                |               |               |                                                |
| 120 minute summer           | Flow Control 2 | Hydro-Brake® | SM1            | 1.8           |                |               |               |                                                |
| 120 minute summer           | SM1            | 1.002        | Basin          | 3.8           | 0.667          | 0.033         | 0.7360        |                                                |

Results for 30 year +35% CC Critical Storm Duration. Lowest mass balance: 99.79%

| Node Event         | US Node        | Peak (mins) | Level (m) | Depth (m) | Inflow (l/s) | Node Vol (m³) | Flood (m³) | Status     |
|--------------------|----------------|-------------|-----------|-----------|--------------|---------------|------------|------------|
| 1440 minute winter | Basin          | 1680        | 4.066     | 0.716     | 13.9         | 403.9103      | 0.0000     | SURCHARGED |
| 1440 minute winter | Flow Control 3 | 1680        | 4.066     | 0.778     | 3.6          | 0.8801        | 0.0000     | SURCHARGED |
| 360 minute winter  | Tank 1         | 352         | 4.811     | 0.491     | 11.0         | 53.6521       | 0.0000     | SURCHARGED |
| 360 minute winter  | Tank 2         | 352         | 4.811     | 0.491     | 6.0          | 41.9878       | 0.0000     | SURCHARGED |
| 120 minute summer  | Tank 3         | 96          | 4.209     | 0.319     | 15.0         | 18.1585       | 0.0000     | SURCHARGED |
| 360 minute winter  | Flow Control 1 | 352         | 4.811     | 0.602     | 3.5          | 0.6809        | 0.0000     | SURCHARGED |
| 120 minute summer  | Flow Control 2 | 96          | 4.209     | 0.363     | 2.5          | 0.4100        | 0.0000     | SURCHARGED |
| 1440 minute winter | SM1            | 1680        | 4.066     | 0.287     | 3.6          | 0.3251        | 0.0000     | OK         |
| 15 minute summer   | Outfall        | 1           | 3.160     | 0.000     | 1.9          | 0.0000        | 0.0000     | OK         |

| Link Event (Upstream Depth) | US Node        | Link         | DS Node        | Outflow (l/s) | Velocity (m/s) | Flow/Cap | Link Vol (m³) | Discharge Vol (m³) |
|-----------------------------|----------------|--------------|----------------|---------------|----------------|----------|---------------|--------------------|
| 1440 minute winter          | Basin          | 1.003        | Flow Control 3 | 3.6           | 0.283          | 0.089    | 0.3977        |                    |
| 1440 minute winter          | Flow Control 3 | Hydro-Brake® | Outfall        | 1.9           |                |          |               | 158.4              |
| 360 minute winter           | Tank 1         | 1.000        | Flow Control 1 | 3.5           | 0.211          | 0.042    | 1.4084        |                    |
| 360 minute winter           | Tank 2         | 2.000        | Flow Control 1 | -1.3          | 0.082          | -0.017   | 1.7605        |                    |
| 120 minute summer           | Tank 3         | 3.000        | Flow Control 2 | 2.5           | 0.232          | 0.034    | 0.7042        |                    |
| 360 minute winter           | Flow Control 1 | Hydro-Brake® | SM1            | 2.0           |                |          |               |                    |
| 120 minute summer           | Flow Control 2 | Hydro-Brake® | SM1            | 2.0           |                |          |               |                    |
| 1440 minute winter          | SM1            | 1.002        | Basin          | 3.6           | 0.473          | 0.031    | 2.7969        |                    |

Results for 100 year +45% CC Critical Storm Duration. Lowest mass balance: 99.79%

| Node Event         | US Node        | Peak (mins) | Level (m) | Depth (m) | Inflow (l/s) | Node Vol (m³) | Flood (m³) | Status     |
|--------------------|----------------|-------------|-----------|-----------|--------------|---------------|------------|------------|
| 1440 minute winter | Basin          | 1470        | 4.333     | 0.983     | 19.2         | 589.8820      | 0.0000     | SURCHARGED |
| 1440 minute winter | Flow Control 3 | 1530        | 4.341     | 1.053     | 4.2          | 1.1911        | 0.0000     | SURCHARGED |
| 720 minute winter  | Tank 1         | 690         | 5.118     | 0.798     | 9.5          | 87.2117       | 0.0000     | SURCHARGED |
| 720 minute winter  | Tank 2         | 690         | 5.118     | 0.798     | 5.2          | 68.2500       | 0.0000     | SURCHARGED |
| 120 minute winter  | Tank 3         | 118         | 4.397     | 0.507     | 14.3         | 28.9206       | 0.0000     | SURCHARGED |
| 720 minute winter  | Flow Control 1 | 690         | 5.118     | 0.909     | 3.4          | 1.0283        | 0.0000     | SURCHARGED |
| 120 minute winter  | Flow Control 2 | 118         | 4.397     | 0.551     | 2.4          | 0.6236        | 0.0000     | SURCHARGED |
| 1440 minute winter | SM1            | 1470        | 4.333     | 0.554     | 3.8          | 0.6271        | 0.0000     | SURCHARGED |
| 15 minute summer   | Outfall        | 1           | 3.160     | 0.000     | 1.9          | 0.0000        | 0.0000     | OK         |

| Link Event<br>(Upstream Depth) | US Node        | Link         | DS Node        | Outflow (l/s) | Velocity (m/s) | Flow/Cap | Link Vol (m³) | Discharge Vol (m³) |
|--------------------------------|----------------|--------------|----------------|---------------|----------------|----------|---------------|--------------------|
| 1440 minute winter             | Basin          | 1.003        | Flow Control 3 | 4.2           | 0.307          | 0.102    | 0.3977        |                    |
| 1440 minute winter             | Flow Control 3 | Hydro-Brake® | Outfall        | 2.0           |                |          |               | 173.5              |
| 720 minute winter              | Tank 1         | 1.000        | Flow Control 1 | 3.0           | 0.175          | 0.036    | 1.4084        |                    |
| 720 minute winter              | Tank 2         | 2.000        | Flow Control 1 | -1.1          | 0.064          | -0.015   | 1.7605        |                    |
| 120 minute winter              | Tank 3         | 3.000        | Flow Control 2 | 2.4           | 0.255          | 0.033    | 0.7042        |                    |
| 720 minute winter              | Flow Control 1 | Hydro-Brake® | SM1            | 2.0           |                |          |               |                    |
| 120 minute winter              | Flow Control 2 | Hydro-Brake® | SM1            | 2.0           |                |          |               |                    |
| 1440 minute winter             | SM1            | 1.002        | Basin          | 3.8           | 0.508          | 0.033    | 2.8168        |                    |



# APPENDICES



## APPENDIX K



## MAINTENANCE AND MANAGEMENT

A proposed maintenance plan is shown in the table below and breaks down the maintenance requirements of the various proposed assets in accordance with the CIRIA C753 SuDS Manual guidance.

**Table 1.1: Proposed Maintenance Regime**

| Drainage Asset       | Responsible Organisation                | Maintenance Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Frequency                                                                                                                        |
|----------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Pipework / Manholes  | Canal and Rivers Trust / Southern Water | Inspect pipework and clear blockages<br>Inspect manholes and clear blockages<br>Repair any defects in the network<br>Inspect flow control, ensure operating freely and pivoting bypass door and penstock valve operating correctly                                                                                                                                                                                                                                                                                    | Annually or after severe storms.                                                                                                 |
| Headwalls            | Private Ownership                       | Inspect the structure and remove any debris/litter on the structure.<br>Replace malfunctioning parts or structures                                                                                                                                                                                                                                                                                                                                                                                                    | Annually or after severe storms<br>As required                                                                                   |
| Gullies              | Highway Authority                       | Inspect structure and remove any debris/litter on structure<br>Replace malfunctioning parts or structures                                                                                                                                                                                                                                                                                                                                                                                                             | Annually or after severe storms<br>As required                                                                                   |
| Foul Pumping Station | Southern Water                          | Inspect wet well, kiosk and valve chamber<br>Inspect structure and remove any debris from the wet well<br>Replace malfunctioning parts or structures                                                                                                                                                                                                                                                                                                                                                                  | Annually or after severe storms<br>As required                                                                                   |
| Flow Control Chamber | Private Ownership                       | Inspect structure and remove excessive silt build-up<br>Inspect pipework and manholes also clear blockages<br>Inspect manholes and clear blockages<br>Inspect flow control, ensure operating freely and pivoting bypass door and penstock valve operating correctly<br>Replace malfunctioning parts or structures<br>Inspect for evidence of poor operation<br>Inspect sediment accumulation rates and establish appropriate removal frequencies<br>Test control structure to ensure operating as per original design | Monthly during construction and then annually or after severe storms<br>Annually or after severe storms<br>6 monthly<br>5 yearly |
| Rainwater Harvesting | Private Ownership / Management Company  | Inspection of the tank for debris and sediment build-up, inlets/outlets/withdrawal devices, overflow areas, pumps and filters<br>Cleaning of the tank, inlets, outlets, gutters, withdrawal devices and roof drain filters of silts and other debris                                                                                                                                                                                                                                                                  | Annually (and following poor performance)                                                                                        |



|                           |                                        |                                                                                                                                                                                                                |                                                                                                                                                          |
|---------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                                        | Cleaning and/or replacement of any filters                                                                                                                                                                     | 3 monthly (or as required)                                                                                                                               |
|                           |                                        | Repair of overflow erosion damage or damage to the tank                                                                                                                                                        | As required                                                                                                                                              |
|                           |                                        | Pump repairs                                                                                                                                                                                                   |                                                                                                                                                          |
| Permeable Pavements       | Private Ownership / Management Company | Brushing and vacuuming (standard cosmetic sweep over the whole surface)                                                                                                                                        | Once a year after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging of manufacturer's recommendations. |
|                           |                                        | Stabilise and mow contributing and adjacent areas                                                                                                                                                              | As required                                                                                                                                              |
|                           |                                        | Removal of weeds or management using glyphosate applied directly into the weeds by an applicator rather than sweeping                                                                                          |                                                                                                                                                          |
|                           |                                        | Remediate any landscaping which, through vegetation maintenance of soil slip, has been raised to within 50 mm of the level of the paving                                                                       |                                                                                                                                                          |
|                           |                                        | Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users and replace lost jointing material                            |                                                                                                                                                          |
|                           |                                        | Rehabilitation of surface and upper substructure by remedial sweeping                                                                                                                                          | Every 10 to 15 years or as required                                                                                                                      |
|                           |                                        | Initial inspection                                                                                                                                                                                             | Monthly for 3 months after installation                                                                                                                  |
|                           |                                        | Inspect for evidence of poor operation and/or weed growth – if required, take remedial action                                                                                                                  | 3 monthly, 48 hours after large storms in first 6 months                                                                                                 |
|                           |                                        | Inspect silt accumulation rates and establish appropriate brushing frequencies                                                                                                                                 | Annually                                                                                                                                                 |
|                           |                                        | Monitor inspection chambers                                                                                                                                                                                    |                                                                                                                                                          |
| Attenuation Storage Tanks | Management Company                     | Inspect and identify any areas that are not operating correctly. If required, take remedial action                                                                                                             | Monthly for 3 months then annually                                                                                                                       |
|                           |                                        | Remove debris from the catchment surface (where it may cause risks to performance)                                                                                                                             | Monthly                                                                                                                                                  |
|                           |                                        | For systems where rainfall infiltrates into the tank from above, check the surface of the filter for blockages by sediment, algae or other matter; remove and replace surface infiltration medium as necessary | Annually                                                                                                                                                 |
|                           |                                        | Remove the sediment from pre-treatment structures and/or internal forebays                                                                                                                                     |                                                                                                                                                          |
|                           |                                        | Repair/rehabilitate inlets, outlets, overflows and vents                                                                                                                                                       |                                                                                                                                                          |
|                           |                                        | Inspect/check all inlets, outlets, vents and overflows to ensure that they are                                                                                                                                 | As required                                                                                                                                              |
|                           |                                        |                                                                                                                                                                                                                | Annually                                                                                                                                                 |



|                              |                    |                                                                                                     |                              |
|------------------------------|--------------------|-----------------------------------------------------------------------------------------------------|------------------------------|
|                              |                    | in good condition and operating as designed                                                         |                              |
|                              |                    | Survey inside of the tank for sediment build-up and remove if necessary                             | Every 5 years or as required |
| Attenuation/Detention Basins | Management Company | Remove litter and debris                                                                            | Monthly                      |
|                              |                    | Cut grass – for spillways and access routes                                                         |                              |
|                              |                    | Cut grass – meadow grass in and around the basin                                                    |                              |
|                              |                    | Manage other vegetation and remove nuisance plants                                                  |                              |
|                              |                    | Inspect inlets, outlets and overflows for blockages, and clean if required                          |                              |
|                              |                    | Inspect banksides, structures for silt accumulation. Establish appropriate silt removal frequencies |                              |
|                              |                    | Check any penstocks and other mechanical devices                                                    | Annually                     |
|                              |                    | Tidy all dead growth before the start of the growing season                                         |                              |
|                              |                    | Remove the sediment from inlets, outlets and forebay                                                |                              |
|                              |                    | Manage wetland plants in outlet pool – where provided                                               |                              |



CIVIL ENGINEERING



TRANSPORT



FLOOD RISK & DRAINAGE



STRUCTURES



GEO-ENVIRONMENTAL



ACOUSTIC AIR



UTILITIES



GEOMATICS



LIGHTING



EXPERT WITNESS



**MEC**

Consulting Group

E: [group@m-ec.co.uk](mailto:group@m-ec.co.uk)  
W: [www.m-ec.co.uk](http://www.m-ec.co.uk)